
Software concepts for hardware
developers

Software concepts for
hardware developers

Outline:

• HW versus SW

• Exploring Linux

• To Linux or not to Linux?

• Use case: video pipeline

1) HW versus SW

Hardware

CPLD code

FPGA code

Microcode

… Software

Changing the meaning of “embedded”

Hardware (-oriented)

• Analog + Digital I/O

• Serial communication

• Limited cycles, memory

• Limited power

• State machine

• Real-time

• Robust

Software (-oriented)

• UI

• Web

• Scripting

• Rapid prototyping

• Run-time code path

2) Enter the high-level SW developer

High-level SW dev comfort zone

• Resources++ => on-target debugging

• Resources++ => OS, pre-installed tools, …

• Reuse, rapid prototyping/development, …

• I/O access

https://raspberrypi.org/downloads/

https://openelec.tv/

…

Software (-oriented)

• UI

• Rapid prototyping

• Web

• Scripting

• Run-time code path

https://raspberrypi.org/downloads/
https://openelec.tv/

Hardware (-oriented)

• Analog + Digital I/O

• Serial communication

• Limited cycles, memory

• Limited power

• State machine

• Real-time

• Robust

Bare-metal (“pure embedded”, …)

GitHub: dwelch67/raspberrypi

GitHub: PeterLemon/RaspberryPi

3) To Linux or not to Linux?

Bare metal
Deterministic + repeatable

Compile-time/static
– memory allocation
– Scheduling

Limited extensibility & scalability

Debugging: chip support

Complex in interweaving

+- DIY

Maximum effect per cycle, if you’re a guru

OS-supported
• Stochastic
• Run-time/dynamic

– memory allocation
– Scheduling

• Extremely extensible & scalable
• Debugging: OS support
• Complex in building block count
• +- Energy can go to porting
• Overhead

It’s the API, stupid!

• Because:

• Enables re-use of the interfaced code

– Provided code

– Self-written code too

• API’s force you to design better

• Designing a good API is important design work

API – overhead?

• Both yes and no

• Are you making:

– Extremely low power?

– Very high volumes?

• If not: then add the extra memory, and
upgrade to the faster SoC

4) Real world use case

• Multi-camera – multi-display system

• + other features

• Latency requirement

• Linux

• i.MX libraries

• GStreamer-i.MX

• GStreamer

• Datasheet

• # possible configurations

• How does…

• What is the impact when…

• … is not the optimal way of

Recap: to Linux or not to Linux?
• Yes, it allows for rapid prototyping/feasibility tests
• Yes, it comes with loads of reusable components
• Yes, it offers good API’s
• Yes, you can adapt whatever you like
• Hmm, not everything is super documented
• No, if you need extreme low power
• No, if the extra € of HW cost will really increase total cost
• Maybe/maybe not, if you have real-time constraints

Conclusion

• HW / SW have become intertwined

• Abstraction (API) is a good thing

• Challenges:

– Rigid & old company structures, processes, …

– Documentation / complexity

– Expertise

Prototypes
PCB design 2D/3D and
mechanical integration

Firmware / Software

Manufacturing

EMC testing

Mechanical engineering
and production

Electronic design:
analog/digital

Stand 7C085

Stefaan De Roeck

Your consultancy partner in high-tech
(embedded) software
and electronics engineering

