
Copyright © 2017 Verum Software Tools BV

Component based software testing

May 2017

Copyright © 2017 Verum Software Tools BV

Why is software relevant?

Health MobilityEnergy Argifood Security

Driving Emerging Solutions

Embedded Software

Demand

Enablers

Robotics IoT Autonomous

Vehicles

Big Data VR/AR

Copyright © 2017 Verum Software Tools BV

Why be concerned about software?

Copyright © 2017 Verum Software Tools BV

Why Verum?

 We stand for more efficient, effective and economic

ways of building and testing high-tech software systems

 Our product, Dezyne, enables engineers to specify,

design, validate and formally verify software components

for embedded, industrial & technical software systems

 It delivers a range of business benefits:

Factor 2-3 increase

in efficiency

20% decrease in

time to market
160x decrease in

field defects

Copyright © 2017 Verum Software Tools BV

Where is Dezyne used?

https://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjEhLOe5f_OAhVF2BoKHVknDkoQjRwIBw&url=https://eftco.co.nz/content/6-contactless-eftpos-solutions&psig=AFQjCNFmdLpiNnLU6VroVD2oasFCtG29Hw&ust=1473424340758704
https://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjEhLOe5f_OAhVF2BoKHVknDkoQjRwIBw&url=https://eftco.co.nz/content/6-contactless-eftpos-solutions&psig=AFQjCNFmdLpiNnLU6VroVD2oasFCtG29Hw&ust=1473424340758704

Copyright © 2017 Verum Software Tools BV

specifications and designs of software systems

DEZYNE modeling language

understand & validate specifications & designs

DEZYNE simulation

prove that specifications & designs are complete and correct

DEZYNE verification

generate efficient, reliable and robust code

DEZYNE code generation

Introducing Dezyne

Copyright © 2017 Verum Software Tools BV

Component based design

System Model

Hardware Component

System Model

Interface SpecificationComponent Specification

Dezyne Component

Copyright © 2017 Verum Software Tools BV

Applications of Dezyne

Sequencing/

Cyclic Control

Communication

& Routing
Logical

Relationships

System

Workflow
Event Handling

Error Handling

& Recovery

Decision Tree

Concurrency

Copyright © 2017 Verum Software Tools BV

How does behaviour scale?

Decisions Sequencing+ =

Event Handling+ = Error Handling+ =

Concurrency+ =

 Behaviour combines exponentially in complexity

 Behavioural problems are extraordinarily difficult to

prevent, detect and understand

 Most behaviour cannot be tested by conventional means

Copyright © 2017 Verum Software Tools BV

Conventional software testing starts with code

The result is rework, late in the lifecycle

Specifications

and designs

are not tested

System

Requirements
System

Test

Acceptance

Test

Concept of

Operations

Subsystem

Requirements

Subsystem

Design

Subsystem

Test

Integration

Test

Unit

Design

Unit

Test

Code

System

Subsystem

UnitX

How conventional development works

Rework

Copyright © 2017 Verum Software Tools BV

What are the consequences?

System

Requirements
System

Test

Acceptance

Test

Concept of

Operations

Subsystem

Requirements

Subsystem

Design

Subsystem

Test

Integration

Test

Unit

Design

Unit

Test

Code

System

Subsystem

Unit +

=
 Poor Predictability

 High Costs

 Delays

 Questionable Quality

+

Copyright © 2017 Verum Software Tools BV

System

Requirements
System

Test

Acceptance

Test

Concept of

Operations

Subsystem

Requirements

Subsystem

Design

Subsystem

Test

Integration

Test

Unit

Design

Unit

Test

Code

System

Subsystem

Unit

Defect prevention is better than cure

Dezyne

Specifications

Dezyne

Components

Dezyne

Generated Code

Dezyne Verification

& Validation

Dezyne Verification

& Validation

Dezyne Specifications & Components

can be continuously, automatically tested

Copyright © 2017 Verum Software Tools BV

System

Requirements
System

Test

Acceptance

Test

Concept of

Operations

Subsystem

Requirements

Subsystem

Design

Subsystem

Test

Integration
Test

Unit

Design
Unit
Test

Code

System

Subsystem

Unit

Preventing defects saves €€€

Less Coding Effort

Less Testing Effort

Less Rework

Copyright © 2017 Verum Software Tools BV

Why components?

Each component

has an explicit

interface specification

Data is separated

from Control

The functionality of

each component

is distinct and serves

a specific purpose

Low Coupling High Cohesion

Maintainable, Extensible and Reusable Hardware

Copyright © 2017 Verum Software Tools BV

Why components?

Each component

has an explicit

interface specification

Data is separated

from Control

The functionality of

each component

is distinct and serves

a specific purpose

Low Coupling High Cohesion

Maintainable, Extensible and Reusable Software

“Separation of Concerns”

Copyright © 2017 Verum Software Tools BV

Always up to date documentation

•Free text with formatting

•Model(s)

•Test scenarios / traces

•Dezyne Diagrams

•Test Sequence output

•Verifier report statistics

•Regression tests

Input specification

Documentation is generated directly from

component specifications and designs

HTML output

Copyright © 2017 Verum Software Tools BV

Summary: benefits of MDE

Economically realising reliable, robust software

System

Requirements
System

Test

Acceptance

Test

Concept of

Operations

Subsystem

Requirements

Subsystem

Design

Subsystem

Test

Integration
Test

Unit

Design
Unit

Test

Code

System

Subsystem

Unit

Less Coding Effort

Less Testing Effort

Less Rework

Lower development

costs

Lower testing

costs

Lower documentation

costs

Lower deployment

costs

Lower maintenance

costs

Reducing product lifecycle management costs

Lower design

costs

Copyright © 2017 Verum Software Tools BV

Thanks for your attention

