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Why is software relevant?

Health MobilityEnergy Argifood Security

Driving Emerging Solutions 

Embedded Software

Demand

Enablers

Robotics IoT Autonomous

Vehicles

Big Data VR/AR
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Why be concerned about software?
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Why Verum?

 We stand for more efficient, effective and economic 

ways of building and testing high-tech software systems

 Our product, Dezyne, enables engineers to specify, 

design, validate and formally verify software components 

for embedded, industrial & technical software systems

 It delivers a range of business benefits:

Factor 2-3 increase

in efficiency

20% decrease in

time to market
160x decrease in

field defects
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Where is Dezyne used?
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specifications and designs of software systems 

DEZYNE modeling language

understand & validate specifications & designs

DEZYNE simulation

prove that specifications & designs are complete and correct

DEZYNE verification

generate efficient, reliable and robust code

DEZYNE code generation

Introducing Dezyne
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Component based design

System Model

Hardware Component

System Model

Interface SpecificationComponent Specification

Dezyne Component
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Applications of Dezyne

Sequencing/

Cyclic Control

Communication

& Routing
Logical

Relationships

System

Workflow
Event Handling

Error Handling

& Recovery

Decision Tree

Concurrency
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How does behaviour scale?

Decisions Sequencing+ =

Event Handling+ = Error Handling+ =

Concurrency+ =

 Behaviour combines exponentially in complexity

 Behavioural problems are extraordinarily difficult to 

prevent, detect and understand

 Most behaviour cannot be tested by conventional means
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Conventional software testing starts with code

The result is rework, late in the lifecycle

Specifications 

and designs

are not tested

System

Requirements
System

Test

Acceptance

Test

Concept of 

Operations

Subsystem 

Requirements

Subsystem 

Design

Subsystem 

Test

Integration 

Test

Unit

Design

Unit

Test

Code

System

Subsystem

UnitX

How conventional development works

Rework
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What are the consequences?

System

Requirements
System

Test

Acceptance
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Code

System
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Unit +

=
 Poor Predictability

 High Costs

 Delays

 Questionable Quality

+
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System

Requirements
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Defect prevention is better than cure

Dezyne

Specifications

Dezyne

Components

Dezyne

Generated Code

Dezyne Verification

& Validation

Dezyne Verification

& Validation

Dezyne Specifications & Components

can be continuously, automatically tested
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System

Requirements
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Preventing defects saves €€€

Less Coding Effort

Less Testing Effort

Less Rework



Copyright © 2017  Verum Software Tools BV

Why components?

Each component

has an explicit

interface specification

Data is separated 

from Control

The functionality of

each component

is distinct and serves

a specific purpose

Low Coupling High Cohesion

Maintainable, Extensible and Reusable Hardware
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Why components?

Each component

has an explicit

interface specification

Data is separated 

from Control

The functionality of

each component

is distinct and serves

a specific purpose

Low Coupling High Cohesion

Maintainable, Extensible and Reusable Software

“Separation of Concerns”
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Always up to date documentation

•Free text with formatting

•Model(s)

•Test scenarios / traces

•Dezyne Diagrams

•Test Sequence output

•Verifier report statistics

•Regression tests

Input specification

Documentation is generated directly from 

component specifications and designs

HTML output
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Summary: benefits of MDE 

Economically realising reliable, robust software

System

Requirements
System

Test

Acceptance

Test
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Less Coding Effort

Less Testing Effort

Less Rework

Lower development

costs

Lower testing

costs

Lower documentation

costs

Lower deployment

costs

Lower maintenance

costs

Reducing product lifecycle management costs

Lower design

costs



Copyright © 2017  Verum Software Tools BV

Thanks for your attention


