

CO-DEVELOPMENT MANUFACTURING INNOVATION & SUPPORT

High-Level and Model-Based Design Targeting FPGAs and SoCs

Sander Ter Burg, FPGA System Engineer

3T B.V.

- What we do:
 - Electronic and Embedded Systems
 - Co-Development and Re-design
 - Manufacturing (together with production partners)
 - Consulting & Support
- Where we are:
 - Enschede + Eindhoven
- More info:
 - www.3T.nl
 - info@3T.nl

Summary

- High-Level Design and Synthesis
- Model-Based Design
- Model-Based Design Examples
 - SCARA Robot Braking Controller
 - Radar Tracking Module

Traditional HDL Design example

- All code written in HDL
- No CPUs on-board
- HDL to Low Level Logic

HDL = Hardware Description Language

High(er)-Level Design example

Higher Level Design Blocks

- High-Level Model to HDL
- C/C++ code running on a CPU

HLS examples

- C/C++ to HDL + synthesis
- MATLAB to HDL + synthesis
- ... to HDL + synthesis

High Level Design Tools

For FPGA devices:

- Vivado HLS (Xilinx)
- HLS Compiler (Intel)
- HDL Coder (MathWorks)
- and more...

For SoC devices:

- SDSoC (Xilinx)
- SDK for OpenCL (Intel)
- Embedded Coder (MathWorks)
- and more...

High Level Design Pros ...

- Well suited for complex mathematical problems
- Fast Functional Iterations
- Freedom of implementation (CPU and/or Logic)
- Simulation time reduction (in software)
- Early resource estimation
- HDL Co-Simulation in software environment

High Level Design Cons ...

- Hardware mind-set still needed
- Code restructuring needed
- Generated HDL is not very readable
- Less suitable for (peripheral) interface controllers
- But... tools keep getting better

Model-Based Design

- A form of High-Level Designing
- Mathematical and visual design method
- To design:
 - Complex controllers
 - Signal processing
 - Communication systems
- Applications fields examples:
 - Industrial
 - Aerospace
 - Automotive

Real vs. Virtual World

Model-Based Design

- Multidisciplinary Design Approach
- Design with Virtual Models (without hardware)
- Simulation in the Virtual environment
- Models are always a complexity / effort trade-off
- Controller Model as good as your Plant/Appl. Model

Model-Based Design Examples

- SCARA Robot Braking Controller
- Radar Tracking Module

SCARA Robot Braking Application

- Move intermediate semiconductor products
- Controlled emergency braking
- Braking Requirements:
 - Follow robot trajectory while braking
 - Deviation from trajectory < 1mm</p>
 - Rest is under NDA... 🧽
- Customer provided Mechanical Models (in MATLAB Simulink)
 - SCARA Motor Model
 - Controller Model

Simulink Model of Plant and Controller

Simulink Braking Controller Model

Simulink FPGA Model

www.3t.eu

Simulink Braking Regulator (Model to HDL)

Braking Regulator HDL Co-Simulation

Design and Verification Summary

- From "High Level Model" to "Generated HDL"
 - Various Model Translations
- Generated HDL for Regulator Model (HDL Coder)
 - Angle/Direction Calculation + Braking Controller
- Hardcoded Design Blocks (non HDL Coder)
 - ADC / DAC Control + Control / Status / Communication Blocks
- Design Verification:
 - Co-Simulation + Hardware-in-the-Loop
- Design Fine-tuning:
 - Timing Closure, Resource Sharing,
 - Xilinx IP Instantiation for FFT

Radar Tracking Module example

- For Traffic Data processing
- Customer provided a High-Level Model (MATLAB) including:
 - Radar Module
 - Signal Processing
 - Tracking Algorithm
- System-on-Module Hardware Target
 - Enclustra Mars ZX3

SoC implementation setup

- eCos RTOS on CPU1
 - For real-time Control and Communication
 - Only available RTOS for this SoM
- Tracking Algorithms on CPU2
 - Generated C/C++ from Matlab Model
 - Running bare-metal on CPU2
- Image Processing in FPGA LOGIC
 - 2D Traffic Data Matrices Operations

Radar Tracking Model

Image Processing Module Simulation

- Intermediate Model Results used in HDL TestBench
- HDL TestBench Results verified in the Model

Hardware-in-the-Loop Verification

Tooling

- Mathworks Tools:
 - MATLAB: Complete Radar Tracking Model
 - Embedded coder: *Tracking Algorithms Implementation*
 - Instrument Control toolbox: Hardware-in-the-Loop Verification
 - Signal processing toolbox: Digital Filter Design
- Xilinx Vivado:
 - Xilinx IP: FFTs for Image Processing
 - Xilinx IP: Gbit Ethernet for UDP communication
 - Custom IP: Decimate for Image Processing
- Xilinx to MATLAB: Xilinx FFT C-model converted to MATLAB file

Summary and More Info:

- High-Level Design and Synthesis
- Model-Based Design
- SCARA Robot Braking Controller
- Radar Tracking Module

■ Email: Sander@3T.nl

■ Web: www.3T.nl

■ Stand: 7A108

Next Up:

- Herman Kuster
- Topic Embedded Systems
- Hardware platform for industrial ultrasound steel plate Inspection

electronics & embedded systems

3T B.V.

Institutenweg 1 7521 PH Enschede

Esp 401 5633 AJ Eindhoven The Netherlands The Netherlands

T. +31 53 4 33 66 33

F. +31 53 4 33 68 69

E. info@3t.nl

W. www.3t.eu