

Viscom AG

X-Ray Inspection - as much as necessary and

How artificial intelligence AI can support AOI/AXI programmers and operators

by Michael Muegge, Viscom AG, Sales

Michael Muegge, BA Electronics

1984 German High School Matura

1984-1987 Apprenticeship as Radio Technician

at Fuba Hans Kolbe & Co in Bad Salzdetfurth

1987-1988 Military Service

1988-1992 Studies of Electronics at College FH Hannover,

Degree: Dipl.-Ing.(FH), Bachelor of Arts

Manufacturing Engineer at Fuba Hans Kolbe & Co., 1992-2001

from 1995: Fuba Automotive GmbH (Delphi-Group),

in Bad Salzdetfurth

2001-2002 Manufacturing Engineer at Bosch Blaupunkt in Hildesheim

2002-2005 Manufacturing Engineer at Bosch Elektronik GmbH in Salzgitter

2005- Sales Engineer at Viscom AG in Hannover

Vice President **FED**

Chapter Hanover

Contact:

Fachverband für Design. Leiterplatten- & Elektronikfertigung

Michael Muegge

Carl Buderus-Str. 9-15 Tel. 0511 94996-752 30455 Hannover michael.muegge@viscom.de

Linked in

Contents

- Application examples AOI/AXI/MXI
- Comparison AOI/AXI
- Artificial Intelligence AI in context with AOI/AXI Programming and defect classification
- Conclusion and outlook

Defects detectable using AOI Systems

Paste Print missing or smeared paste

Solder Joint Tombstone

Component Placement polarity and alignment

Solder Joint lifted lead

AOI: Various Illumination Types for Defect Detection

Emphasizes relevant quality features

Minimizes interferences

Direct top illumination

Narrow angle diffuse illumination

Angle View for Greater Inspection Coverage

- Use of 4 or 8 cameras, oriented through mirrors at an angle to the surface
- 4 cameras inspect every 90° angle
- 8 cameras every 45° angle (shadowing)

May 14, 2019

May 14, 2019

252_Package_AV_225.png

A 3D reconstruction can't show the region below the package. It appears as if a curtain covers the sides

251 Package AV 225.png

A reliable analysis of the solder joints below the package is possible using angular view cameras (2.5D AOI) (peeking under the bed)

254_Package_3D+_224.png

Viscom's 360° Reconstruktion combines the advantages provided by both angular view 2.5D optical inspection and 3D reconstruction. Angular view images are being projected on the curtains.

Defects which require X-Ray analysis

Hidden solder joints

Voids

Defects not detectable using X-Ray

Methods of Automatic X-Ray Inspection

2-D X-Ray Inspection

2-D X-Ray Inspection

Solder Joints which always require 2.5-D X-Ray

THT solder joint filling level

Example relay:

X-Ray Settings: 80 kV, $20 \mu A$

"Good"

"Bad"

3D Approach

VISCOM

voxel room

The detector only shows the shade. It doesn't tell where exactly the absorbing material is

X-Ray absorbing material causes a shade on the X-Ray detector

X-Ray detector

X-Ray detector

X-Ray detector

X-Ray detector

3D Approach

X-Ray detector

X-Ray detector

X-Ray detector

The calculated vertical voxel layers are stacked to a virtual voxel volume

Now it's possible to cut virtual layers from the voxel volume and to look inside the absorbing material

Automatic X-Ray
Inspection AXI
analyzes the layer
which provides most
of the solder joint
information

Inline X-Ray System X7056-II

- Flat Panel Detector (FPD) with xy axis
- Planar CT generated from up to 66 angular views
- Separation of top and bottom side

Comparison: Light versus X-Ray "illumination"

	Visible light	X-Ray "Light"
qty of simultaneous sources	multiple	single
Source variation speed	faster	slower
image acquisition speed	faster	slower
wavelength range (Information range)	wide	narrow
information carrier	reflections in many directions from the object	shadow in one direction from the object
source-object-sensor distances (machine z-size)	smaller	larger
object travel range to allow full size inspection (machine x/y-size)	smaller	bigger
resulting inspection performance	more	less

Viscom X7056-II AOXI

Viscom inline Combi-Inspection System X7056-II 3D-AOI and 3D X-Ray inspection in one single cabinet

Recommendations

- Use Automatic Optical Inspection as much as possible because it is the fastest and most reliable inspection method.
- Apply Automatic 2D or 2.5d X-Ray analysis if this is sufficient to analyze solder joint quality. Only one image from an angular view is necessary.
- Apply Automatic 3D X-Ray Analysis only if you need to separate information of absorbing material on one side of the pcb from the one on the other side (Shadowing)
- Apply AXI using the information which AOI provides to increase performance and to decrease false calls.

Artificial Intelligence - Deep Learning

 Deep Learning supports defect classification at the verification station

Deep Learning supports program generation

Automatic or autonomous driving?

Automatisierungsgrad

Source: VDA autonomous means without driver

Partially automated driving

objective: driver assistance and safety increase

Partially atomated defect verification

objective: operator assistance and quality increase

V-AI: Automatic Verification using AI

Automatisation level

Deep Learning supported program generation

- Automatic component type identification (NPI)
- Automatic program optimization
- Automatic fine tuning (integrated defect verification)

AI: Viscom Strategy

General target: "zero escapes / zero false calls",

- False calssifications can be avoided by combining diverse technologies like 3D AOI, 3D X-ray und AI
- Elimination of false calls and escapes resulting from human errors by using proven functions like the Integrated Classification Verification
- Keep the process transparent and support the operator's decision making.

Conclusion

If you have to reduce your ppm rates of defects from single digits down to zero then you have to use both AOI and AXI Inspection Technology.

If you don't have much floor space available for automatic inspection then you should choose a small combined inline inspection system

If you look for a supplier which offers

35 years experience in AOI and

25 years experience in AXI then you should talk to Viscom AG in Hannover, Germany

For more information, visit us at the E&A, booth 7A059 (Smd-Tec + Demo-plein)

Future events

Viscom Technologie-Forum 2019

05.06.2019 - 06.06.2019, Hannover, Deutschland

Motek 2019

07.10.2019 - 10.10.2019, Stuttgart, Deutschland

Internationale Fachmesse für Produktions- und Montageautomatisierung

LED meets SMT

24.10.2019, Regensburg, Deutschland

2. Fachforum

productronica 2019

12.11.2019 - 15.11.2019, München, Deutschland