IoT Power Consumption Measurement Challenges

Sven De Coster– Application Support Engineer CN Rood

CN Rood

- Largest independent distributor for test- and measurement equipment
- BeNeLux, Nordics and Baltics
- Broad range in t&m for electronics, video, telecom/IP networking, PNT, power grid, RF spectrum, fiber network, ... Even high speed video cameras
- My background
 - Engineer measurement & control; started at Honeywell
 - 'sabbatical' at advertising company marketing knowledge
 - 1996 Tektronix ; 2003 CN Rood (with Tektronix's move to distributor model)

Agenda

- Intro world of connected devices and how to maximize battery life
- Selecting optimum components with I-V characteristics
- The challenge of measuring Power Consumption in all operating states
- Summary

The Number of Connected Devices is Growing Exponentially

Your Objective: Maximizing Battery Life your need: instrumentation to:

- Select and qualify low power components
- Measure power consumption
 - Determine power consumed in all operating states
 - Measure sleep mode currents
 - Capture current bursts when your product is active or transmitting
 - Determine the product's average current draw
- Assess how the battery's discharge cycle affects product performance
 - Determine your product's low battery shut-off voltage
- Quantify battery life

Challenge: Meeting Aggressive Goals

• example low power product requirements

Target

- Power Budget: <u>80 μ W</u> (80 μ W/4V battery = 20 μ A)
- Battery Life of 6 months

Target budget breakdown

Main Design Blocks	Budget Allocation	
Accelerometer	14uW	17.5%
Bluetooth Low Energy Tx/Rx	12uW	15%
Power Management Unit	20uW	25%
Processing (MCU 100uA/MHz + memory + peripheral + oscillator)	34uW	42.5%

Selecting the Optimum Components

Verifying that critical components meet your requirements

Need to Select Low Power Components

Need to Measure Quiescent nA Currents

• solution: SourceMeasureUnit

- V-Source, I-Source, V-Meter, I-Meter, and Electronic Load
- Very low current measurement with <pA sensitivity
- Accurate low voltage sourcing
- Voltage sweeps
- Tight integration of sourcing and measurement

Assessing Your Product's Power Consumption

Measuring load current in all operating states

Need: Determine Product Power Consumption

• challenge: measuring load currents in all operating states

- Measuring low sleep mode currents: 10's of nA to 10's of μA
- Measuring transmit load currents
 - Tens of mA to Amps
 - Short duration current bursts: μ s' to 10's of ms
- Capturing the complete load current profile
- Detecting unwanted transients

The Importance of Accurately Capturing the Total Current Consumption Profile

- Debug product firmware and software to optimize low power operation
- Capture and debug undesirable hardware anomalies

Measuring Instrument Requirements

- Measuring sleep mode currents
 - 0.1nA or lower current sensitivity
 - High measurement accuracy
- Capturing current bursts due to the RF transmissions
 - Sufficient sampling speed
 - Sufficient bandwidth
 - Triggering modes
 - Waveform display and signal analysis
- Capturing the load current profile
 - Deep memory to store minutes of data

Minimize Impact of the Measuring Circuit

• voltage burden reduces the voltage supplied to the product and the measured current is lower

Shunt Ammeter

Feedback Ammeter

- 150mV to 1V voltage burden in typical DMMs
 - Reduces voltage to productunder-test
 - (0.7% to 7% of a 4.2V battery's voltage)
- Lower sensitivity, 0.1µA
 - Lower signal-noise ratio

- <1mV voltage burden
- High current sensitivity
 - Sensitivity down to 10⁻¹⁵A
- Large signal-to-noise ratio
- Bandwidth limited

Scope with Current Probe

Scope and Sense Resistor

• need a large sense resistor to measure low currents

Picoammeter or SourceMeasureUnit

• minimize voltage burden with feedback ammeter

Requirements	Ability to meet the Requirements	
Sleep mode Measurements	 pA sensitivity Extremely low voltage burden, 200µV 	
Capturing short current bursts	 Very low bandwidth Very slow measurement rate limited triggering options 	
Capturing a load current profile	Limited data storage	
Visualizing the data	Numerical or small graphical display	

6 ½ - Digit DMM Measuring Voltage

• lacks both sensitivity and speed

Requirements	Ability to meet the Requirements
Sleep mode Measurements	Inadequate sensitivity
Capturing short current bursts	 Bandwidth <300kHz Sampling rate < 50 ksample/s No level trigger
Capturing a load current profile	Record length < 2M samples
Visualizing the data	No waveform display

6 ¹/₂ - Digit DMM Measuring Current

Requirements	Ability to meet the Requirements
Sleep mode Measurements	 Inadequate sensitivity ≥ 150mV voltage burden
Capturing short current bursts	 Bandwidth <300kHz Sampling rate < 50 ksample/s No level trigger
Capturing a load current profile	Record length < 2M samples
Visualizing the data	No waveform display

Bringing together Scope and DMM functions

- 8-bits ...12 bits digitizer
- Sample speed typ. > GS/s
- Large Graphical display
- Horizontal / vertical cursors
- Analog triggering

• 18-bits digitizer + high res integrating A/D

DMM with display

- Sample speed 1 MS/s
- 100 pA current measurement sensitivity with digitizer
- 1 pA DC current measurement sensitivity
- 5" Graphical TouchScreen Display with cursors
- Analog triggering

Sensitive high Speed Sampling DMM with display

• one-instrument solution with high sensitivity and high speed

Source

Requirements	Ab	ility to meet the Requirements
Sleep mode Measurements	•	1 pA sensitivity Low voltage burden, 15mV on lowest ranges
Capturing short current bursts	•	1Msample/s sampling rate Level, slope, and other triggering modes
Capturing a load current profile	•	Millions of readings
Visualizing the data	gra	phical touchscreen display with statistics

Sensitive high Speed Sampling DMM with display

• sensitive measurement with scope-like performance

- high measurement accuracy and resolution
 - 1pA resolution
 - Example: 1μ A measurement shows 1.000000μ A with ± 0.375 nA accuracy
- Scope waveform capture

Sensitive high Speed Sampling DMM with display • Practical case: wireless sensor with battery life of 5 years • "new" measured peaks required re-design

Power Consumption Measurements Solutions for Your IoT Device Test Needs

Summary

IoT Power Consumption Test Needs

optimum solution

- Qualify low power components with a SourceMeasureUnit Can also act as a battery model generator
- Capture all the power with the Sensitive high Speed Sampling DMM with display pA sensitivity, 1 MS/s digitizer, and deep memory
- Most realistic simulation of the battery with the Battery Simulator

Thank you for Attending

7C130

Sven De Coster-Application Support Engineer

