Carrying high currents on PCB – From wire to PCB

How hot would you like it?

Agenda

01

High Current Applications

02

High Current on PCBs

03

Temperature Measurements on PCBs

Panasonic INDUSTRY

State of the art

This is what we know, and this is what we trust!

Current Carrying Capability of Cables and Wires DIN VDE 0298-4

For cables with a nominal voltage of up to 1000 V and for heat-resistant cables at an ambient temperature of + 30 °C.

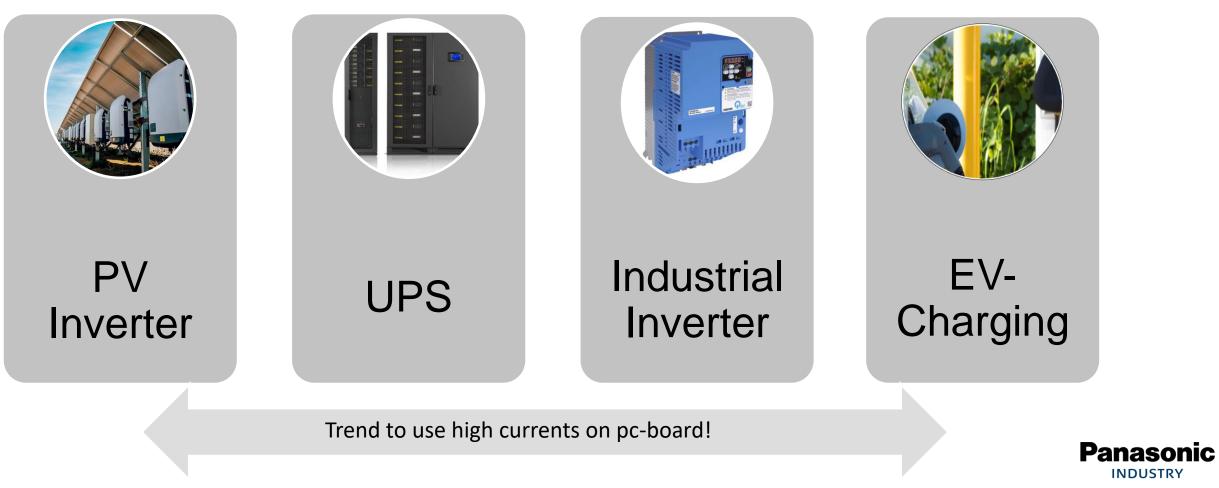
Verlegeart	A1	A2	B1			Cable o	category						
0	Verlegung in wärmegedämmten Wänden		Verlegung		A		B	C Multi-core cables excl.					
			, en regung		 Single-core cables Rubber insulation 	Multi-core cables for domestic/handheld equipment • Rubber insulation		Multi-core cables excl. domestic/handheld equipment • Rubber insulation • PVC insulation	B1	1	B2		C
			A. 1 1 . 1		 PVC insulation TPE insulation 						D2		
	Elektroinstallationsrohr	mehradriges Kabel oder mehradrige ummantelte	Aderleitun Elektroinst		Heat-resistant	PVC insulation TPE insulation		TPE insulation Heat-resistant	Verlegung in ktroinstallationsrohren		rohren	Verlegung auf einer Wand	
		Installationsleitung in einem Elektroinstallat-	auf einer W		⊴ • ≈	6	A		3	2	3	2	3
		ionsrohr in einer wärme- gedämmten Wand		Installation type				7//////// @@@ 7///////////	stbarkei in A	t			
			h	Number of cores under load	13)	2	3	2 or 3	5 15,5 21	23	15,0 20	19,5 27	17,5 24
				Nominal cross-section in mm ²	Current rating in A	Current r	rating in A	Current rating in A	28	30	27	36	32 33,02
			-	0.081	1.5	-	-	1	36	38	34	46	41
				0.14%	3	-	-	2	50	52	46	63	57
	2			0.25%	5	-	-	4	-	_	47,17		59,43
Verlegeart	D	E		0.34%	8	-	-	6	68	69	62	85	76
	Verlegung in Erde			0.5	12 ²⁾	3	3	9 ²)	89	90	80	112	96
				0.75	15	6	6	12	110	111	99	138	119
	mehradriges Kabel im Elel	ktro- mehradriges Kabe	l mit Abstanc	1.0	19	10	10	15	134	133	118	168	144
	installationsrohr oder Kabe	el- von mindestens 0,	3 · Durch-	1.5	24	16	16	18	171	168	149	213	184
	schacht im Erdboden	messer D zur Wan	d	2.5	32	25	20	26	207	201	179	258	223
				4	42	32	25	34	239 262	232	206 2	299	259
		8 8	,	6	54	40	-	44		258		344	299
			-	10	73	63	-	61		294	255	392	341
				16 25	98	-	-	82		_			403
			9				-		346 394	344 394	297 339	461 530	403
				35	158	-	-	135	394	394	339	330	404
///////////////////////////////////////			70	245		-	207						
Tabelle 9.1 Referenzverlegearten A1, A2, B1, B2, C, D, E, F und G, für Kal			G für Kabel	95	245		-	250					
70 °C, Umgebungstemperatur 30 °C, nach DIN VDE 0298-4:1998-11 (zuri				120	344		-	292					
			-11 (zuruckg	150	391	-	-	335					

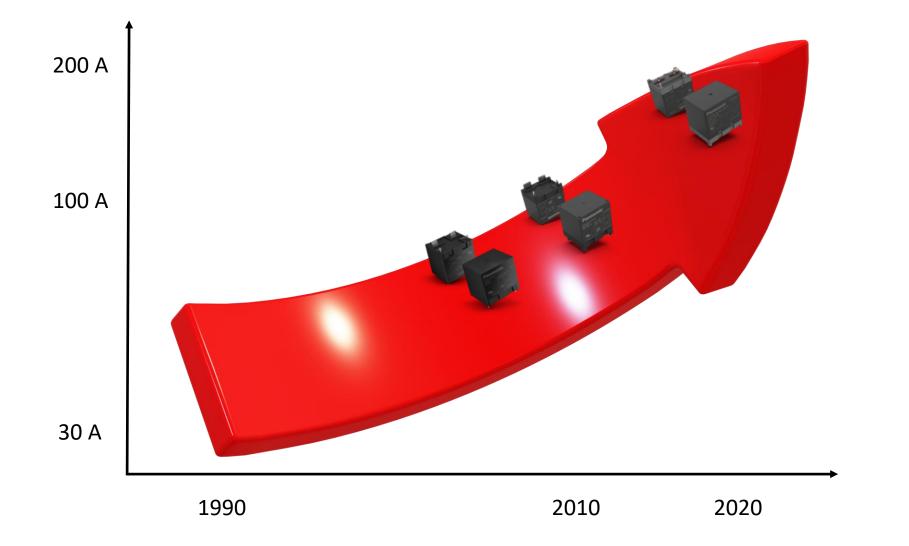
Wires in applications

Open Source Wallbox Project

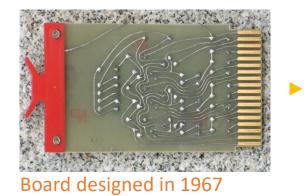
- Failures in setup and maintenance
- intense maintenances effort

- + Easier to replace
- + Less failures
- + Less maintenances


High Power Applications on PCBs reduce installation and maintenance time



Applications for high-current AC-relays


High Power Relais development

PCB development over the years

...and today

https://www.ksg-pcb.com/leiterplatten-technologien/hsmtec

- Multilayers up to 560 µm thickness
- Selective Copper: normal copper layers + copper profiles (only as much copper as needed)

- + Best for High Current applications
- expensive manufacturing
- Simulation necessary

What do I do starting out of the blue?

High Currents on PCB

Calculation for Current Carrying Capability

IPC-2221 Thermal Standards

The thermal standards in IPC-2221 were developed using thermal data from test boards, where traces were supplied with a known current and the temperature change in the trace was measured. The results were gathered for standard thickness boards and summarized into a formula relating copper area (in square mils), temperature rise (in °C), and current (in Amperes):

 $I = k \Delta T^{0.44} A^{0.725}$

Load curves from the 1960 → wrong and not in relation to standard technologies

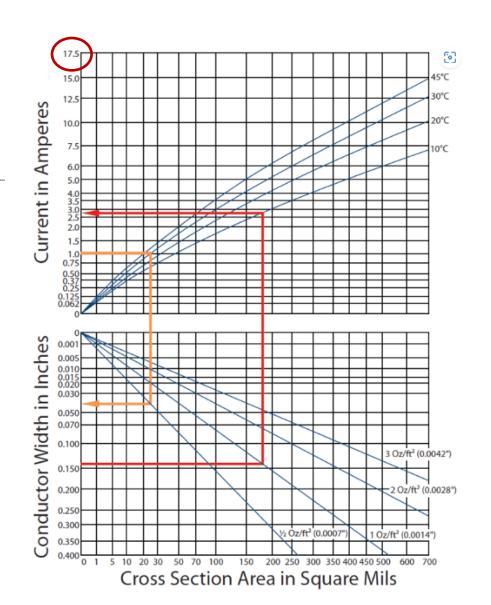
IPC-2152 Thermal Standard

- Only two conductor geometries are analyzed
- Gives a good overall understanding about current carrying capability
- Only qualitative, not quantitative!

High Currents on PCB

Calculation for Current Carrying Capability

IPC-2221 Thermal Standards


The thermal standards in IPC-2221 were developed using thermal data from test boards, where traces were supplied with a known current and the temperature change in the trace was measured. The results were gathered for standard thickness boards and summarized into a formula relating copper area (in square mils), temperature rise (in °C), and current (in Amperes):

 $I = k \Delta T^{0.44} A^{0.725}$

Load curves from the 1960 → wrong and not in relation to standard technologies

IPC-2152 Thermal Standard

- Only two conductor geometries are analyzed
- Gives a good overall understanding about current carrying capability
- Only qualitative, not quantitative!

Physics to consider

• Joules Law and heat generation

Joule's law:

$$\mathbf{P} = U \cdot I = R \cdot I^2$$

El. Resistance:

$$R = L \cdot \frac{\rho_{20} (1 + \alpha_{20} (T - 20))}{w \cdot d} \quad \rho_{20} = 0.0175 \,\Omega \cdot \frac{mm^2}{m} \text{ at } 20^{\circ}\text{C} \qquad \alpha_{20} = 0.00395 \frac{1}{K}$$

Thermal Resistance

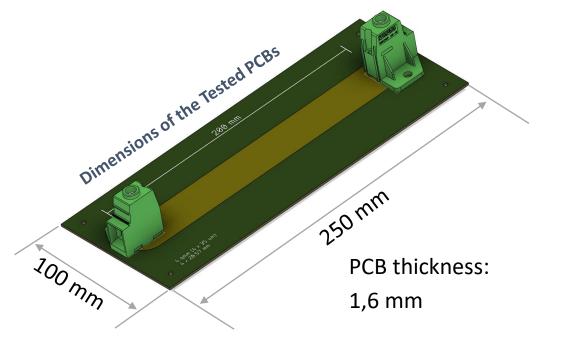
- Heat conduction: $R_{th} = \frac{d}{\lambda \cdot A}$
- Convection: $R_{th} = \frac{1}{\delta \cdot A}$
- Heat radiation: $R_{th} = \frac{d}{\varphi \cdot A}$

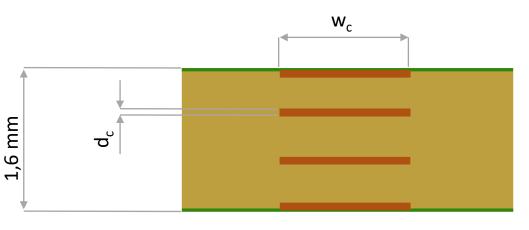
Important to consider in the PCB design

Important to consider in the PCB design and the application cooling

Symbol	Description	Unit
R_{th}	therm. Resistance	K/W
d	Thickness	μm
Α	Area	mm²
λ	Thermal Conductivity	W/mK
δ	Heat transfer coefficient	W/m²K
φ	Heat transfer coefficient	W/m²K

Physics to consider

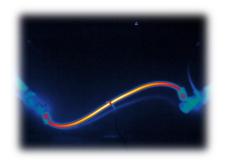

Heat conduction:
$$R_{th} = \frac{d}{\lambda \cdot A}$$

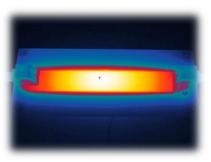

Material	Thermal Conductivity λ [W/mK]	
Copper	300	>x 1000
FR4	0,25	> x 1000
Air (still)	0,026	x 10

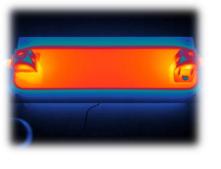
Design variations to properly lead high Currents

- standard Copper Thickness 35 μm und 70 μm (point of price)
- 4 Layer Stack up
- Measurement ambience: Air (still room), no enclosure
- Conductor track with a length that presumably shows a stable temperature level without influencing the connected exterior

Varying PCB Parameters						
Conductor width w _c [mm]	different					
Conductor depth d _c [µm]	35	70				
Cross Section Area [mm ²]	3, 4, 6	4, 10, 16				
Heat Conduction layer	yes	no				
Type of Heat Conduction layer	different					

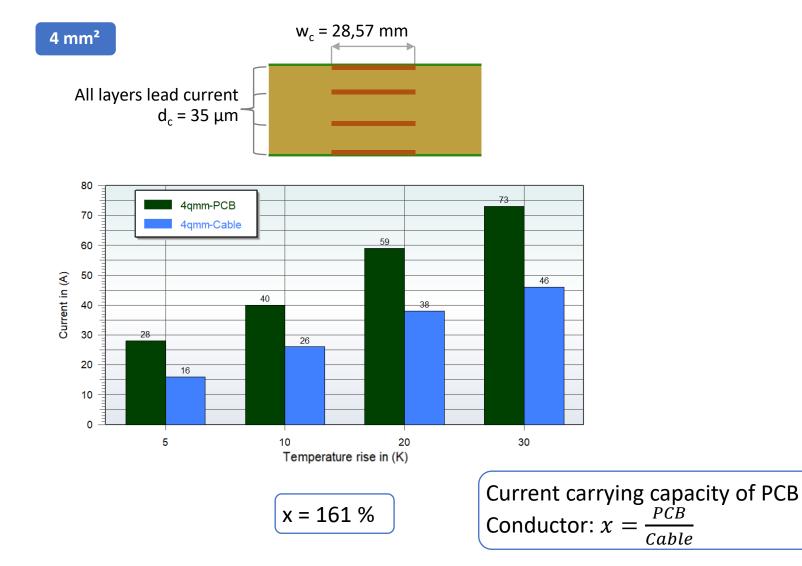

- Reasonable diameter to carry high currents
- Conductor width vs. Conductor depth
- Importance of heat conductors
- Amount of copper

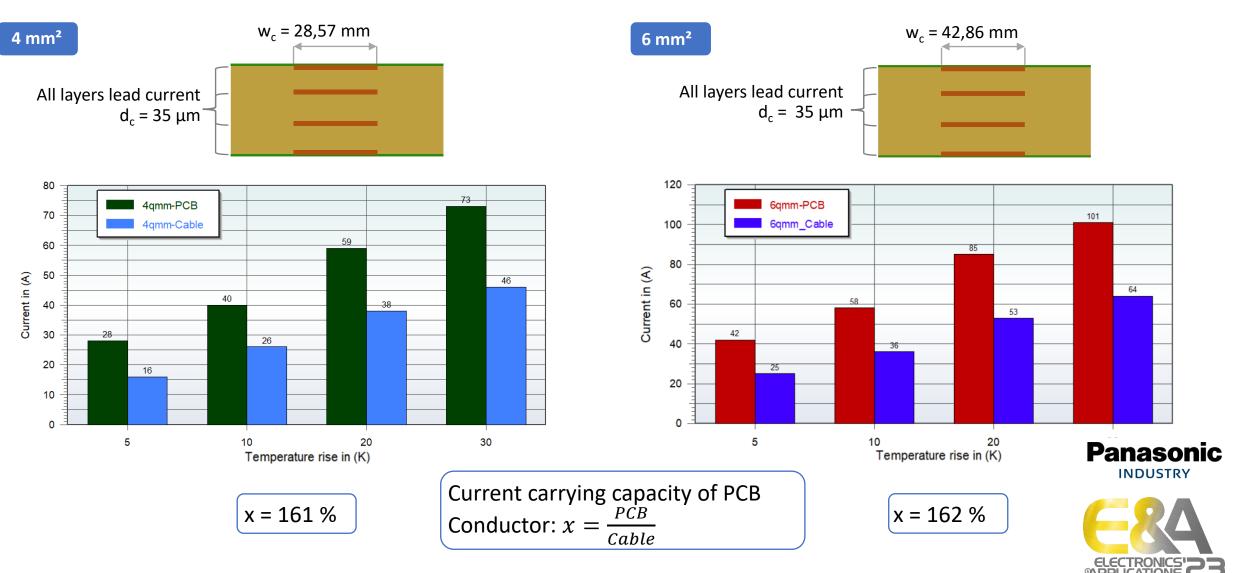


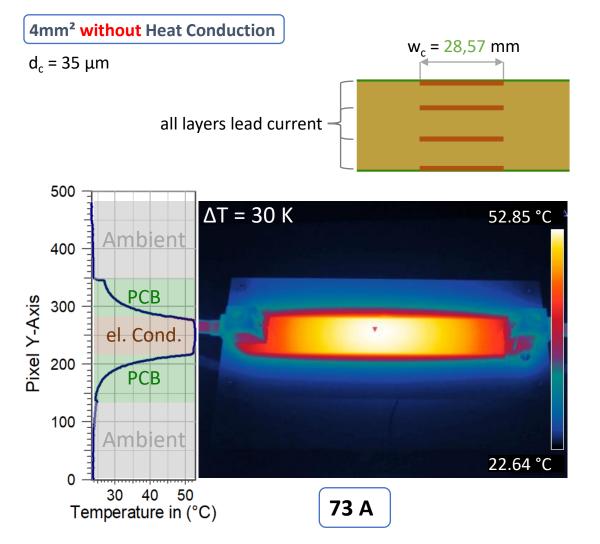


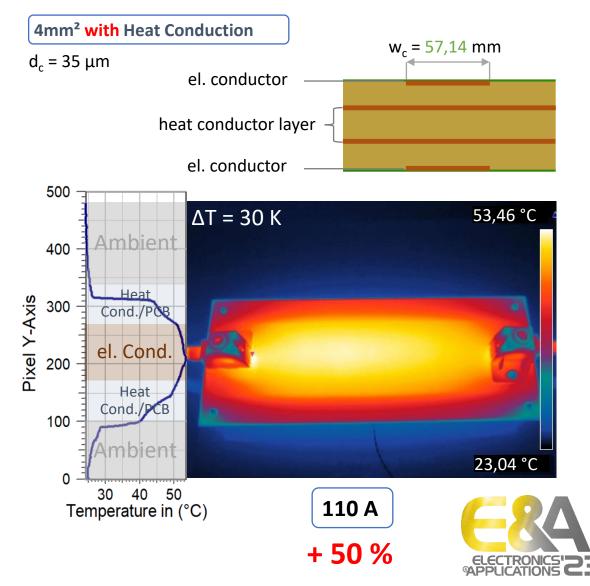
Testing different designs for high current conductors on PCB

- Diameter of cable vs.
 Diameter of PCB Conductor
- **2** PCB with and without heat Conduction Layers
- **3** Different Solutions for heat Conduction Layers Conductor width vs. Conductor depth

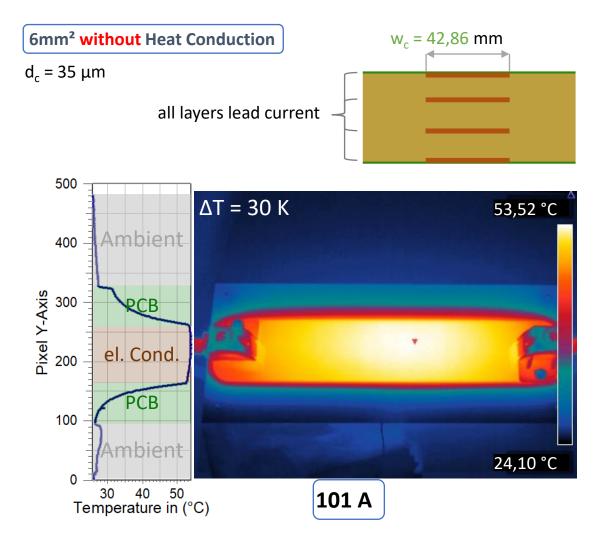


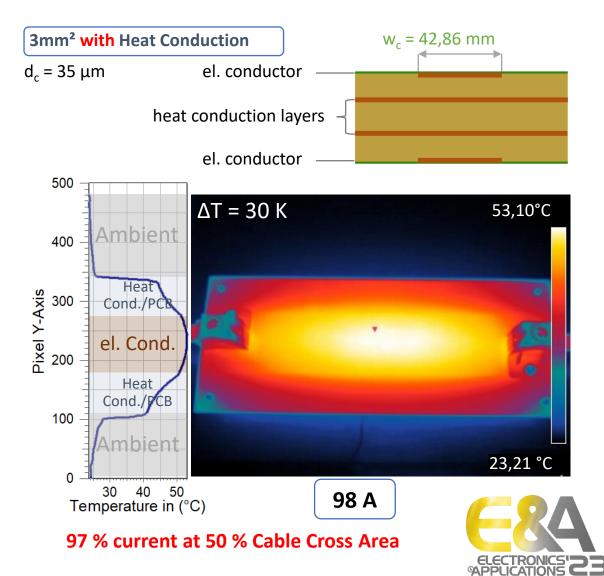

1. Diameter of cable vs. Diameter of PCB Conductor

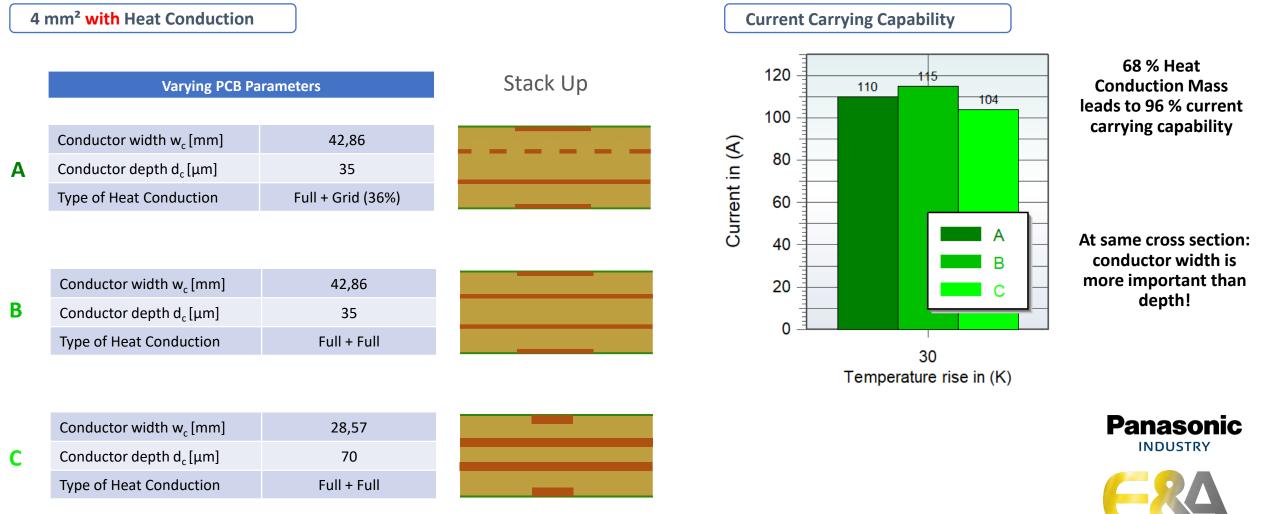




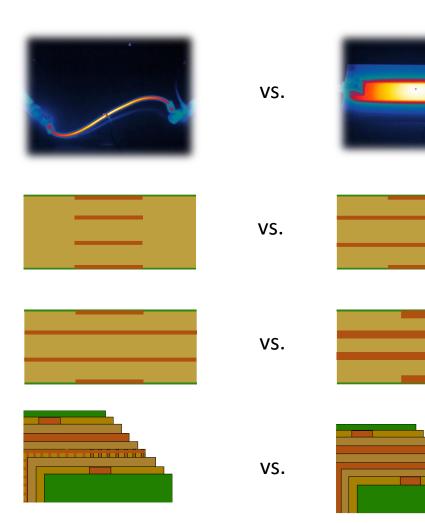
1. Diameter of cable vs. Diameter of PCB Conductor




2. PCB with and without heat conduction (same area)



2. PCB with and without heat conduction (different area)



3. Different Solutions for heat conduction / Width vs. Depth

ELECTRONICS'

Summary

PCB showed a 160% better performance % vs. a cable with the same area

Adding a heat conduction layer improved performance to 150%

Almost same performance with half conduction area and heat conduction layer

Width is more important than depth

Signal layers may not affect the heat conduction much

Panasonic INDUSTRY

Bernd Proessner

Bernd.Proessner@EU.Panasonic.com

Hall 7 - 7C089

