
Harnessing the power of
property-based testing in FPGA

design and verification
Christiaan Baaij, QBayLogic

Testing is hard

▪ Hardware, software, doesn’t
matter - same principles apply
– Does function X behave like Y?

▪ Functions / components have a
habit of becoming complex
– Did we test enough?

Figure 1: average function in production code

Typical tests

assert_equal(3 + 5, 8)
assert_equal(1001 + 3, 1004)
assert_equal(1001 + (-1), 1000)
…

▪ Did you cover all edge cases?
▪ Are the properties you test for clear?
▪ Hard to think of a set of tests!

Computer aided testing

▪ We want computers to help us think of test cases

▪ Cue randomized testing:
a. Define a property a design should adhere to

b. Generate random input, test design upholds property

c. On error: report broken design/property to user
On success: repeat step b

Today

▪ Discuss challenges with randomized testing

▪ Discuss “Hedgehog” approach used by many Clash designers

Clash

1. BSD2 licenced Haskell to Verilog/VHDL compiler
– Haskell: a functional programming language
– Verilog/VHDL: Industry’s hardware description languages

2. A standard library for writing digital circuits

Clash in production:
▪ Myrtle.ai: neural network inference accelerators
▪ Google: R&D platform self-synchronizing computer networks
▪ LumiGuide: bicycle parking management ProRail train stations

Haskell

1. High-level, statically typed, compiled, general purpose language

2. Expressive type system

3. Functional: encourages thinking what, not how
a. Separation of “pure” and “side-effect” code

4. Ecosystem with
a. Build tools
b. Package repositories
c. Many high-quality libraries

5. Haskell in production:
a. ShellCheck: Bash linter
b. Sigma: Facebook spam filter
c. Chordify: (online) audio analysis

Clash+Haskell

▪ Combining state of the art software tooling with hardware design in
the same language

▪ Pioneer in constrained random testing:
– 2006: QuickCheck
– 2017: Hedgehog <= today’s focus
– 2023: Falsify

Design under test

myShiftL ::
Bitvector 16 -> Arg 1: bits to be shifted
Int -> Arg 2: number of positions to shift
Bitvector 16 Result: shifted bits

clashi> myShiftL 0b0000_0000_0000_0010 3
0b0000_0000_0001_0000

clashi> myShiftL 0b0000_0000_0000_0010 8
0b0000_0010_0000_0000

clashi> myShiftL 0b0000_0000_0000_0010 0
0b0000_0000_0000_0010

Dials

Our design has two dials:
▪ Bitvector to shift
▪ Number of positions to shift by

Our design will have two obvious bugs:
▪ Doesn’t work for negative shifts
▪ Doesn’t actually shift, but rotates

Test code

1 prop_idWithShiftL :: H.Property

2 prop_idWithShiftL = H.property $ do

3 bv <- H.forAll $ Gen.integral $ Range.linearFrom 0 0 maxBound

4 shiftByN <- H.forAll $ Gen.integral $ Range.linearFrom 0 (-100) 100

5

6 goldenShiftL bv shiftByN === myShiftL bv shiftByN

What do we expect?

▪ Any negative number fails
▪ We generate shifts from -100 to 100
▪ Maybe it will fail with:

– -52
– 0001_0011_1001_1000

Growing inputs

Hedgehog doesn’t pick just at random, it turns the dials

number of positions to shift
bitvector value

What do we expect?

▪ Any negative number fails
▪ We generate shifts from -100 to 100
▪ Hedgehog will slowly grow these values
▪ Maybe it will fail with:

– -52
– 0001_0011_1001_1000

Actual error

┏━━ tests/Tests/HwAccel/Shifter.hs ━━━
18 ┃ prop_idWithShiftL :: H.Property
19 ┃ prop_idWithShiftL = H.property $ do
20 ┃ bv <- H.forAll $ Gen.integral $ Range.linearFrom 0 0 maxBound
┃ │ 0 b0000_0000_0000_0001

21 ┃ shiftByN <- H.forAll $ Gen.integral $ Range.linearFrom 0 (-100) 100
┃ │ -1

22 ┃ goldenShiftL bv shiftByN === myShiftL bv shiftByN
┃ ^^^
┃ │ ━━━ Failed (- lhs) (+ rhs) ━━━
┃ │ - 0 b0000_0000_0000_0000
┃ │ + 0 b0000_0000_0000_0010

Shrinking!

▪ Once Hedgehog hits an error it will start shrinking inputs
▪ It will try to minimize as many “dials” as it can
▪ Result will be something very close to where your bug lives

Real-life example: bittide project

▪ https://github.com/bittide/bittide-hardware
▪ Hardware support to enable a distributed system architecture (data

centers) based on the idea of synchronous, ehead-of-time
scheduling.

▪ System-on-Chip with many protocols and Network-on-Chip (NoC) like
features.

▪ Example properties:
▪ The NoC switch does not lose packets
▪ Concatenating an A->B bus-protocol converter to an B->A protocol converter

gives me an A->A component
▪ Interconnect for AXI4 can properly route transactions for any valid

memory map

Real-life example: bittide project

https://eri-summit.darpa.mil/docs/ERIsummit2019/posh/24POSH%20Princeton%20Website.pdf

Other test generation approaches

▪ Property-based testing versus constraint-random testing:
▪ Property-based testing does not draw all random data before-hand, making

it possible to leverage runtime information to guide random data generation
▪ Can automatically shrink the failing test case to a minimal failing case once a

bug is discovered

▪ Coverage-directed test generation (CDG) is complementary to PBT

Closing thoughts

▪ Higher confidence in functional correctness
▪ Higher likelihood you’ll meet that deadline
▪ Still.. not a silver bullet, you have to think about:

– Properties
– Generators

▪ This talk covered aspects of testing during the design development
phase, later talks will cover testing in a completely different light:
testing after manufacture.

Standnummer 7F103

christiaan@qbaylogic.com

mailto:christiaan@qbaylogic.com

Harnessing the power of
property-based testing in FPGA

design and verification
BACKUP SLIDES

Clash’s features

▪ Inherited from Haskell
– Extensive type system
– Algebraic Data Types
– Package management and build tools
– Optimizing compiler
– State-of-the-art testing libraries
– REPL
– Polymorphism, metaprogramming, higher-order

functions, compile time evaluations, …

Clash’s features

▪ Clash the standard library
– Multi-clock designs without accidental clock-domain crossings
– Clear separation of stateful and combinatorial logic
– Type level pipeline delay tracking
– SVA/PSL support
– Safe multiplication / subtraction / …
– Cycle accurate simulation in Haskell

▪ Clash libraries:
– `clash-cores`: pre-made cores, Xilinx primitives
– `clash-protocols`: easy protocol composition

	Dia 1: Harnessing the power of property-based testing in FPGA design and verification
	Dia 2: Testing is hard
	Dia 3: Typical tests
	Dia 4: Computer aided testing
	Dia 5: Today
	Dia 6: Clash
	Dia 7: Haskell
	Dia 8: Clash+Haskell
	Dia 9: Design under test
	Dia 10: Dials
	Dia 11: Test code
	Dia 12: What do we expect?
	Dia 13: Growing inputs
	Dia 14: What do we expect?
	Dia 15: Actual error
	Dia 16: Shrinking!
	Dia 17: Real-life example: bittide project
	Dia 18: Real-life example: bittide project
	Dia 19: Other test generation approaches
	Dia 20: Closing thoughts
	Dia 21
	Dia 22: Harnessing the power of property-based testing in FPGA design and verification
	Dia 23: Clash’s features
	Dia 24: Clash’s features

