DESIGN AUTOMATION EMBEDDED SYSTEMS

1931 CONGRESCENTRUM BRABANTHALLEN DEN BOSCH

SECURITY/FPGA - EMBEDDED - INTERNET OF THINGS - ELECTRONIC DESIGN/PRODUCTION - TESTING

Advanced PCB checks without being a Signal Integrity Expert

Erik Nijeboer CB Distribution bv www.cb-distribution.nl

D&E

2015

CB Distribution

- Started 2004
- Cadence Channel Partner Netherlands, Belgium, Luxembourgh, Spain and Portugal
- Located in Hengelo (Netherlands) and Tres Cantos Madrid (Spain)
- Sales and Support of
 - Cadence IC-, PCB- and Packaging-Tools
 - OrCAD
 - WISE GerbTool
 - Nextra three-dimensional PCB design
 - Dassault, Enovia DDM/PLM environment

Training and Services

• Training

Tool and methodology

CAD Support

- Availability of software binaries
- Setup and maintenance of licenses
- Project environment setup
- Scripts
- Setup and maintenance of data transfer
- Conversions
- IT Support
 - Setup, maintenance and support of
 - VPN, Remote Desktop Machine(s), Virtual servers

Agenda

- The gap between DRC and SI simulations
- Introducing new PCB checks
- Applications and examples
- Conclusion

More PCB designs require SI analysis

- Higher design frequencies
- Rising/falling edges getting smaller.
 - With a rising edge of 1ns you already see reflections on traces longer then 2.5 cm.
 - Longer than 7.5 cm you see significant reflections.
- This also applies to crosstalk and EMI.

DRC is the starting point of a good PCB design

- Good PCB SI design starts with adequate DRCs in layout tools.
- Today's designs are getting complicated, DRCs are getting complicated too.
- General limitations for complicated DRCs.
 - Complicated DRCs are normally harder to set up.
 - PCB designs are still measured in mil/mm, so the rules tend to be more conservative.

The gap between DRC and SI performance

- The gap between layout designers and SI engineers is huge.
 - Have different design expertise.
 - Using different tools.
 - Measured by different units.

Two trace segments example DDR3 SODIMM

© 2015 Cadence Design Systems, Inc.

DRC – Simplified impedance view

- 2 trace segments, same trace width, same impedance
- You can also see trace segment length
- DRC correct

© 2015 Cadence Design Systems, Inc.

If you look close enough...

- Trace9047: one uniform impedance section
- Trace9048: 4 impedance sections

Trace coupling

- Trace9047 broken into 5 sections based on trace coupling
 - two no coupling sections (1 & 5)
 - two 2-line
 coupling sections
 (2 & 4)
 - one 3-line coupling section (3)

From 2 trace segments to entire board

• How to analyze the entire SODIMM?

Agenda

- The gap between DRC and SI simulations
- Introducing new PCB checks
- Applications and examples
- Conclusion

ERC and SRC filling the gap

- ERC and SRC filling the gap between layout designers and SI engineers
 - Expanded expertise
 - Using same tools
 - Measured by same units

What is ERC?

- ERC Electrical Rule Check
- ERC is individual, segment-level view in geometry domain for PCB's SI performance with
 - Trace reference
 - Trace reference-aware impedance
 - Trace reference-aware coupling
 - Differential pair routing phase
 - # of vias and via locations, ….

- Organized for easy SI performance interpretation
- Practical for board level check (setup, simulation, report)

< 2min 10-20min

auto

ERC's reference-aware impedance/coupling check

CB Distribution

© 2015 Cadence Design Systems, Inc.

17

ORCAD CADENCE PCB SOLUTIONS

ERC result view

Impedance Plot (expanded)

ERC result view

What is SRC?

- Simulation Rule Check
- SRC is a net-level view in time-domain of impact due to ERC violations measured in mv&ps.
- No device model needed (no IBIS, Spice)
 - Setup considering termination impedance, data rate (pulse width, rise/fall time) and amplitude
 - Results with Tx/Rx/NEXT/FEXT waveforms, SI performance metrics
 - Organized to easy SI performance interpretation along with ERC
- Practical for board level check (setup, simulation, report)
 < 2min ~ 20min auto

SRC setup

Device models not needed

TW

Import Tx/Rx Models

type

R

R

Interface and ckt type

NG1:SE

NG1:Diff

Tx_term R(ohm)

40

40

T_period

0

0

- Voltage pulse as stimulus, users can specify
 - Amplitude
 - Data rate (pulse width, rise/fall time)
 - Termination ٠

Set up SI Metrics Check Wizard

Set up Tx/Rx Models

SOLUTION

Time-domain waveforms

 SI metrics are defined using magnitudes of Rx and FEXT

$$Int_sig = \int_{t_1}^{t_2} |Rx(t)| dt$$
$$Int_ISI = \int_0^{t_1} |Rx(t)| dt + \int_{t_2}^{t_{max}} |Rx(t)| dt$$
$$Int_xtk = \sum_{t_1} \int_0^{t_{max}} |fext_i(t)| dt$$

SN _difference = (Int _sig) – (Int _ISI) – (Int _ xtk
SN _ ratio =
$$\frac{Int _sig}{(Int _ISI) + (Int _xtk)}$$

Where

 t_1 and t_2 are starting and ending time for the received pulse (1 UI width) t_{max} is maximum time-domain simulation time

OrCAD CADENCE PCB SOLUTIONS

SRC – SI metrics check Net-level performance ranking

Ranking by SI Metrics

Net name	INT_Sig (V*ps)	INT_ISI (V*ps)	INT_XTK (V*ps)	SN_difference (V*ps)	SN_ratio
DQ19	287.97	22.96	3.7	261.31	10.8029
DQ17	288.15	22.79	3.12	262.24	11.1223
D1 (2	206 52	04.01	2.04	250.20	10 5156

• Ranking by xtalk levels

5					
9 -	18	37	14	-15	29
7 -	15	32	16	-16	32
2 .	-2	5	3	-3	6
	9 - 7 - 2 -	-18 7 -15 2 -2	9 -18 37 7 -15 32 2 -2 5	9 -18 37 14 7 -15 32 16 2 -2 5 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ERC and SRC HTML Report

cādenc

OrCAD Sigrity ERC SI Performance Metrics Check Report

2.2 Net group Data U0 U4

Date: 12:11 July 30, 2014

this is a tutorial

1 General information

1.1 Spd file name and location

SPDGEN version: 14.0.2.07112

File names and locations:

Layout spd file

D:/Backup/3_Training/SIM/Movie/SIM_movie_sim/

- SI metrics check results file
 - D:/Backup/3_Training/SIM/Movie/SIM_movie_sim/1

	0									1
Tx component	Net name	Passive component	Net name	Passive component	Net name	Rx component (active)	Rx component (standby)	Rx component (notpopulated)	FIR filter	Pulse c
U0	DQ29					U4		Not populated		v-ed
U0	DQ31	-	-		-	U4	-	Not populated		v-eds
U0	DQ30	-	-			U4	-	Not populated		v-ed
U0	DQS3_N	-			-	U4		Not populated	no	v-ma
UO	DQS3_P	-			-	U4		Not populated	no	v-ma
UO	DQ28	-		-	-	U4	-	Not populated		v-edg
UO	DQ26	-		-		U4	-	Not populated		v-edg
UO	DQ24	-	-			U4	-	Not populated		v-eda
U0	DQ27					U4	-	Not populated		v-edg
U0	DM3	-	-		-	U4	-	Not populated		v-edg
UO	DQ25		-	-	-	U4	-	Not populated		v-edg

25 © 2015 Cadence Design Systems, Inc. All rights reserved.

CADENCE PCB SOLUTIONS

OrCAD Sigrity ERC

- Sigrity quality SI electrical checking for the PCB designer.
- Other PCB formats supported.
- Altium - PADS, Expedition **OrCAD Sigrity ERC** - Cadstar, CR5000 **Electrical Rules Electrical Rules Checks** Analysis -SI Metrics Computer Street -Trace Impedance -Trace Return Path -Via Return Path -Trace Coupling -Net Coupling -etc... OrCAD PCB or OrCAD ERC Floorplanner

Agenda

- The gap between DRC and SI simulations
- Introducing new PCB checks
- Applications and examples
- Conclusion

ERC/SRC applications (1)

- To screen board and to identify worst case for further analysis
- To investigate SI impact of design rule violations and trade-offs

Problems found in layout design

What is the impact in mV & ps?

To fix, or not to fix?

If layout problems can be quantified using mv/ps, it is much easier to decide

ERC/SRC applications (2)

 To find out how to fix SI problems shown in SRC simulation

How to fix them in layout If problems can be root caused in layout, it is much easier to fix

How to fix it in layout?

Problems found in simulation results

ERC/SRC Example SRC – the problem Byte

- One of the problems identified is Byte0 for channel B has large xtalk
- PCB routing
- Design was DRC correct

ERC/SRC Example SRC – the problem Byte

- One of the problems identified is Byte0 for channel B has large xtalk
- PCB routing
 - Data_A Byte0 ^
 Smaller FEXTs
 - Data_B Byte0 Larger FEXTs

UD1

UD2

UD3

ERC/SRC Example SRC – the problem Byte

ERC/SRC Example ERC – DataA Byte0 impedance

ERC/SRC Example ERC – DataA Byte0 impedance

© 2015 Cadence Design Systems, Inc.

ERC/SRC Example ERC – DataB Byte0 impedance

ERC/SRC Example ERC – DataB Byte0 impedance

Impedance Plot (expanded)

ERC/SRC Example ERC – DataA Byte0 coupling

ERC/SRC Example ERC – DataB Byte0 coupling

$\frac{\text{ERC/SRC Example}}{\text{ERC} - \# \text{ of vias}}$

- DataA Byte0: 2 vias
- DataB Byte0: 4 vias

Net name	∧ No. of vias
DDR_A_D0	2
DDR_A_D1	2
DDR_A_D2	2
DDR_A_D3	2
DDR_A_D4	2
DDR_A_D5	2
DDR_A_D6	2
DDR_A_D7	2

Net name	Δ	No. of vias
DDR_B_D0		4
DDR_B_D1		4
DDR_B_D2		4
DDR_B_D3		4
DDR_B_D4		4
DDR_B_D5		4
DDR_B_D6		4
DDR_B_D7		4

ERC/SRC Example How to fix

To reduce the xtalk level of channel B Byte0, user can consider one, or combination, of the following improvements:

Impedance

reduce the impedance discontinuities in pin field routing length

Coupling

reduce the coupling in pin field routing

• Via

reduce via number

Agenda

- The gap between DRC and SI simulations
- ERC/SRC filling the gap
- ERC/SRC applications and examples
- Conclusion

Conclusion

- DRC's alone cannot validate the interconnects electrical characteristics
 - Examples: signals crossing split or different reference planes causing impedance changes.
- ERC/SRC are signal quality checks at the individual, segment-level in the geometry domain.
 - ERC: Shows why low performance happened and how to fix it .
 - SRC: Shows what happened and its effect on performance.
- ERC/SRC designed for use by the PCB layout designer, NOT the signal integrity (SI) expert.
- SI Expert can focus on other complex problems.

