

Keep the Customer Satisfied

ASML

-

Dick van Hees 04-11-2015/D&E Event

Public

Slide 2 5 November 2015

Agenda

Public

Slide 3 5 November 2015

Customer Expectation

Expose Wafers

- Resolution (..nm)
- Field size (..*..mm)
- Overlay (.nm)
- Throughput (...wph)
- Cost of Operation (. €/exposure)

Functional Breakdown

Expose Wafers: €/exposure

- System Availability
- System Cost of Operation
- System Delivery Time

Operational Breakdown

ASML

Public

Slide 4 5 November 2015

Public

Slide 5 5 November 2015

5 November 2015

Public Slide 6

Translate Expectation \rightarrow Specification

Operational Requirements

- Availability (SEMI)
 - Reliability (MTBI, MTBF)
 - Serviceability (MTTR)
- Cost
 - System Cost
- Delivery Performance
 - Cycle Time (CT)
 - Part Quality (FPY, ZHDR)

F

Public

Translate Expectation \rightarrow Specification

Availability (wpy)

- Up Time
- Down Time
- Non Scheduled Time

Figure 2 SEMI E10 Summary of Time

Translate Expectation \rightarrow Specification

€/exposure

- Cost Of operation
 - Maintenance Cost
 - Gas/fluids/electricity
 - Repair cost
- System Cost
 - Part Cost (Supplier Parts)
 - Build Cost

Delivery Performance

- Time to Complete a system
 - Cycle time (build and test)
 - Disturbance Time (Part Quality/Part Availability/...)

Public

Slide 8 5 November 2015

5 November 2015

Translate Expectation \rightarrow Specification

Public Slide 9

Functional Requirement/Part

Operational Requirement/Part

- Part Quality (FPY & Zero Hour Defect Rate)
- Part Cost (€)
- Cycle Time (h)
- Reliability (Hits/part/year)
- Serviceability (MTTR)

Public

Slide 10 5 November 2015

Prediction Methodologies

Operational Requirement/Part

• Part Quality (Zero Hour Defect Rate)

ASML

Public Slide 11 5 November 2015

- Part Cost (€)
- Cycle time (h)
- Reliability (Hits/part/year)
- Serviceability (MTTR)

Public

Slide 12 5 November 2015

Operational Requirements		РСВ	PCBA	Electro Mechanical	Mechanics	Mechatronics	
Part Quality							
FPY	%	\checkmark					
ZHDR	%/ppm						
Reliability	Hits/part/year						
Servicability							
Diagnostic	h						
Repair	h						
Recovery	h						
Part Cost	€	\checkmark					
Cycle Time	h						

Prediction Methodologies

Operational Requirement/Part

Part Quality (Zero Hour Defect Rate)

ASML

Public Slide 13 5 November 2015

- Reliability (Hits/part/year)
- Serviceability (MTTR)
- Part Cost (€)
- Cycle time (h)

Public

Slide 14 5 November 2015

Zero Hour Defect Rate (ZHDR) Definition

Public

ASML

Slide 15 5 November 2015

Zero Hour Defect Rate (ZHDR) Definition

Maximum accepted failure rate during system build (%) measured over an agreed period of time.

Specification

Requirement	Requirement	Verification		Source				
ID	Text	Min.	Тур.	Max.	Unit	method	Status	ID
	First Pass Yield (FPY). Required ability to manufacture part without rework or test.				%			
	Zero Hour Defect Rate (ZHDR). Maximum allowed part failure rate.				% DPMO			

Prediction

Requirement	Requirement	Verification		Source				
ID	Text	Min.	Тур.	Max.	Unit	method	Status	ID
	First Pass Yield (FPY). Calculated ability to manufacture part without rework or test.				%			
	Zero Hour Defect Rate (ZHDR). Calculated maximum allowed part failure rate.				% DPMO			
	Zero Hour Defect Rate (ZHDR) Manufacturing				% DPMO			
	Zero Hour Defect Rate (ZHDR) Design				% DPMO			

Part Quality (ZHDR) Prediction Part Defect Opportunities

Slide 16 5 November 2015

.....

 $ZHDR = 1 - \prod_{i=1}^{DO} [1 - DPMO_i * 10^{-6}]$

Parts Quality (ZHDR) Prediction

Process ZHDR

ASML

Public Slide 19 5 November 2015

Parts Quality (ZHDR) Methodology

New Product Introduction (NPI)

- Predict Supplier/Factory Part Quality in Design Phase
 - Based on the Preliminary BOM (PBOM)

MEM	DESCRIPTION	UNIT	ASSEMBLY	QUANTITIES		
NO.			OR FSN NO.	TROP	NORTH	
1-1	Louise Batter - santet sus an passie	14	3011	1		
1+1	Ports 205	14.	1647	1 .		
1-1			100-10-04	1 .	1	
1- 1	LANY CLOSTERS, WER BARE, INCHE PROPERTY, SHE'R (128 T	11	\$240-100 -010			
1-1	PERSTANCEMENT, & WINE, IL ANY, ILE .	11	1030-102-380	11	1.	
1 - 1	PLATE: BRADE, BURGER ARESPERENCE	14	1525 -680 -its	•	٠	
		14	\$1 \$1 - ill - ill	1 .	1	
	nee, second, 2/4 "s sta"	14	15+5-100-000		11	
1-11	wint, m, t t/c stanspit, sam prast . tant		E			
1-11		14	1070-111-000	1		
1+11	14.10, BAIRIE 199	11	3241-102-185			
1+4	DEITER, SAFETY, 868 AN7, 5157, 57	1.0	3838 - 101-100	1 1		
1-16	PRIE, ACARPANI,		\$1.13 - 182 - 541	•		
3-15	Unt. fest, tes ast, tis +			1.		
	7885 Parts . 38 Aur. 123 7	1110-10-10	11			
		E		E		

base

DPMO

Public

Slide 20 5 November 2015

ASML

Parts Quality (ZHDR) Prediction

Outcome is the Zero Hour Defect Rate

- Risk mitigation to bring the ZHDR at specified level
 - Design Change
 - Process change at Supplier/factory

• Test

ASML

Public

Slide 21 5 November 2015

