

Designing a dual-fuel motor management system with Zynq

Frank de Bont

- Customer Requirements
- Engine Management System
- LNG Supply
- Sensors / Actuators
- AR Electronic Control Unit
- Zynq Architecture
- Design Flow and Tools
- High-Speed ADC IP-block
- Software Partitioning and Communication Channels
- Why Linux with Xenomai
- eMMC Configuration
- Who is Core|Vision

Customer Requirements

Design a dual-fuel motor management system with real-time control Hardware Platform Caterpillar 3500 Diesel LNG (Liquefied Natural Gas) High fuel efficiency Start up on Diesel and then switch over to a mixture with LNG Lowest possible emissions \triangleright NO_x, SO_x, CO₂ and CH₄ (methaan) Easy to retrofit Suitable for different qualities of LNG Still 100% Diesel as a fall back

Customer Requirements cont

Focus on motor management control also called ArenaRed Electronic Control Unit

- Hardware Platform Caterpillar 3500
 - Diesel
 - LNG (Liquefied Natural Gas)

Engine Management System

Engine Management System

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

O RE Vision

Sensors / Actuators

- Combustion in each cylinder is monitored by a set of cylinder pressure sensors
- These allows the AR-ECU to optimize the combustion timing and gas mixture
- In the exhaust are UEGO λ-sensors and temperature sensors to monitor the results of each combustion cycle

AR Electronic Control Unit

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

D&E

event 2015

ALL PROGRAMMABLE

🗶 XIL

AR Electronic Control Unit

AR Electronic Control Unit cont

General Interfaces

- DDR3 memory
- ➢ eMMC
- SPI Flash
- > JTAG
- ➢ RS485
- > CAN
- Ethernet
- ≻ ...

Monitor Interfaces

- > 16x 12 bits ADC
- 2x UARTs
- 1x CAN
- 10x PWM outputs

CORE | Vision

AR Electronic Control Unit cont

REVision

Electromechanical drivers

- High Voltage IO
- High Current IO

Digital Interfaces

- High Current IO
- Low Current IO
- Sensor Inputs

Analog Interfaces

- High Speed Inputs
- Low Speed Inputs
- Analog Outputs

Misc Interfaces

- LED bank
- Position Interface
- Expansion Connector

Catepillar 3500 & AR-ECU

Zynq Architecture

NEXT LEVEL EMBEDDED DEVELOPMEN

____ D&E

event

2015

4 NOV ← RABANTHALLEN

DEN BOSCH

S XI

NEXT LEVEL EMBEDDED DEVELOPMENT

____ D&E

event

2015

ALL PROGRAMMABLE

4 NOV ← RABANTHALLEN DEN BOSCH

S XI

____ D&F

event

2015

4 NOV € ABANTHALLEN

S X

NEXT LEVEL EMBEDDED DEVELOPMENT

DEN BOSCH

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

RE Vision 17

D&

even

2015

4 NOV 🗲

ABANTHALLEN

DEN BOSCH

NEXT LEVEL EMBEDDED DEVELOPMENT

____ D&E

event

2015

4 NOV ← BRABANTHALLEN

DEN BOSCH

XILINX

Design Flow and Tools

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

19

CORE Vision

High-Speed ADC IP-block

- High-Speed ADC to read pressure sensors
- AXI streaming interface for transmitting ADC data completed with timestamp and crank angle
- AXI slave interface for configuration
- Interface to 2 ADC channels of the ADS8363

RE | Visit

High-Speed ADC IP-block cont

CORE Vision

NEXT LEVEL EMBEDDED DEVELOPMENT

Documentation PLocation Show disabled ports Component Name ADCs_v1_0_0 ADCs configuration AXI configuration NOTE: The S_AXI_CONFIG_CLK is assumed to be the same dock as the M_AXIS_DATA_ACLK. No synchronization is performed between these two clocks. ADC settings C_NR_OF_ADCS PULSE_COUNT_WIDTH 16 UNSECONFIGSION UNSECONFIGSION NUTE: The S_AXI_CONFIG PULSE_ICOUNT_WIDTH 16 1 - 32] ADCS_PULSE_INTERVAL_WIDTH 16 1 TIMESTAMP_WIDD 0 1 TIMESTAMP_WIDTH 0 16			
Component Name ADCs_v1_0_0 ADCs configuration AXI configuration ADCs configuration AXI configuration NOTE: The S_AXI_CONFIG_CLK is assumed to be the same dock as the M_AXIS_DATA_ACLK. No synchronization is performed between these two docks. ADC settings C_NR_OF_ADCS 8 C [1 - 32] PULSE_COUNT_WIDTH 15 C [1 - 32] ADCS_PULSE_INTERVAL_WIDTH 15 C [1 - 32] ADCS	Documentation 📄 IP Location		
ADCs configuration AXI configuration ADCs configuration AXI configuration NOTE: The 5_AXI_CONFIG_CLK is assumed to be the same dock as the M_AXIS_DATA_ACLK. No synchronization is performed between these two docks. ADC settings C_NR_OF_ADCS 8 0 0 [1-32] PULSE_COUNT_WIDTH 16 0 [1-32] ADCS_PULSE_INTERVAL_WIDTH 16 0 [1-32] ADCS_PULSE_INTERVAL_WIDTH 16 0 [20 - 2147483647] TEST_MODE 0 0 1 TIMESTAMP_VALD 0 1 TIMESTAMP_WIDTH 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Show disabled ports	Component Name ADCs_v1_0_0	
Image: State of the second		ADCs configuration AXI configuration	
• \$ \$ _AXI_CONFRS • \$ \$ _AXI_CONFRS [1 - 32] • \$ \$ _AXI_CONFRS • \$ _AXI_CONFRS [1 - 32] • \$ \$ _AXI_CONFRS • \$ _AXI_CONFRS [1 - 32] • \$ \$ _AXI_CONFRS • \$ _AXI_CONFRS [1 - 32] • \$ \$ \$ _AXI_CONFRS • \$ _AXI_CONFRS [1 - 32] • \$ \$ \$ \$ _AXI_CONFRS ADCS_PULSE_INTERVAL_WIDTH [1 - 32] • \$ \$ \$ \$ _AXI_CONFRS ADCS_PULSE_INTERVAL_MINIMUM [20 - 2147483647] TIMESTAMP_VAILD ing [0 0 [20 - 2147483647] TIMESTAMP_SOLUT [n_axis_idsd_anersen [0 1 [0 0 [1 - [16		NOTE: The S_AXI_CONFIG_CLK is assumed to be the same dock as the M_AXIS_DATA_ACLK. No synchronization is performed between these two docks. ADC settings C_NR_OF_ADCS 8 DUINCE_COUNT_NUMBER	
Polse country skilds ADCS_PULSE_INTERVAL_MINIMUM 20 [20 - 2147483647] Polse country skilds ing IEST_MODE - TIMESTAMP_VALID ing 0 - m_axis_dsd_actk 0 1 - m_axis_dsd_actsk 1 IIMESTAMP_WIDTH 0 1 IIMESTAMP_WIDTH 0 16 IIMESTAMP_WIDTH	∯ G_AXI_CONFIG ⊕ ADC	PULSE_COUNT_WIDTH 16 [1 - 32] ADCS_PULSE_INTERVAL_WIDTH 16 [1 - 32]	
avi_config_arest	■PULSE_COLUNT[15:0] ■PULSE_COLUNT_VALID ■TIMESTAMP[31:0] ■_AXIS_DATAΦ = TIMESTAMP VALID	ADCS_PULSE_INTERVAL_MINIMUM 20 [20 - 2147483647] TEST_MODE	
© 16	- s_ai_config_acts - s_ai_config_acts - s_ai_config_acts - m_ais_tdsa_acts	0 0 1	
		© 16	
32		③ 32	
◎ 16	-m_avis_dela_arest.n	© 1 TIMESTAMP_WIDTH	

High-Speed ADC IP-block cont

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

22

COREVision

4 NOV 🗲

Software Partitioning and Communication Channels

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

23

CORE Vision

Since Ethernet is non real-time by nature, crucial realtime signals will be routed over the four dedicated wires.

Why Linux with Xenomai

- Zynq All Programmable SoC dual core Cortex-A9
- Xilinx offers a kernel build and Linux kernel distribution by 3rd parties

- Support Linux 3.14.17 with patches for real-time extension Xenomai 2.6.4 within SDK, version choice is limited
- Xenomai offers greater flexibility and consistency because the real-time tasks can share the same drivers, synchronization primitives and memory as other non real-time tasks

eMMC Configuration

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

26

CORE | Vision

NEXT LEVEL EMBEDDED DEVELOPMEN

Flash Image Generation

🐒 XII

D& even

2015

Core Vision

Our competences

Core|Vision has more than 125 man years of design experience in hardand software development. Our competence areas are:

- System Design
- FPGA Design
- Consultancy / Training
- Digital Signal Processing
- Embedded Real-time Software
- App development, IOS Android
- Data Acquisition, digital and analog
- Modeling & Simulation
- ASIC Conversion & Prototyping
- PCB design & Layout
- Doulos & Xilinx Training Partner

CORE Vision

Cereslaan 10b 5384 VT Heesch (1) +31 (0)412 660088

www.core-vision.nl

Email : info@core-vision.nl

MBEDDED

CORE Vision

NEXT

LEVE

- FPGA DESIGN
- SYSTEM DEVELOPMENT
- DEDICATED ELECTRONICS
- EMBEDDED SOFTWARE
- DESIGN SERVICES
- MODELING AND SIMULATION

Visit our booth 28

CORE Vision

NEXT LEVEL EMBEDDED DEVELOPMENT

Essentials of FPGA Design	1 day
Designing for Performance	2 days
Advanced FPGA Implementation	2 days
Design Techniques for Lower Cost	1 day
Designing with Spartan-6 and Virtex-6 Family	3 days
Essential Design with the PlanAhead Analysis Tool	1 day
Advanced Design with the PlanAhead Analysis Tool	2 days
Xilinx Partial Reconfiguration Tools and Techniques	2 days
Designing with the 7 Series Families	2 days

Vivado Essentials of FPGA Design	2 days
Vivado Design Suite Tool Flow	1 day
Vivado Design Suite for ISE Users	1 day
Vivado Avanced XDC and STA for ISE Users	2 days
Vivado Advanced Tools & Techniques	2 days
Vivado Static Timing Analysis and XDC	2 days
Debugging Techniques Using Vivado Logic Analyzer	1 day
Essential Tcl Scripting for Vivado Design Suite	1 day
Vivado FPGA Design Methodology	1 day
Designing with the UltraScale Architecture	2 days
	 Vivado Essentials of FPGA Design Vivado Design Suite Tool Flow Vivado Design Suite for ISE Users Vivado Avanced XDC and STA for ISE Users Vivado Advanced Tools & Techniques Vivado Static Timing Analysis and XDC Debugging Techniques Using Vivado Logic Analyzer Essential Tcl Scripting for Vivado Design Suite Vivado FPGA Design Methodology Designing with the UltraScale Architecture

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

CORE Vision

NEXT LEVEL EMBEDDED DEVELOPMENT

Designing with Multi Gigabit Serial IO
 High Level Synthesis with Vivado
 C-Based HLS Coding for Hardware Designers
 C-Based HLS Coding for Software Designers
 DSP Design Using System Generator
 Essential DSP Implementation Techniques for
 Xilinx FPGAs
 2 days

Embedded Systems Design	2 days
Embedded Systems Software Design	2 days
Advanced Features and Techniques of SDK	2 days
Advanced Features and Techniques of EDK	2 days
Zynq All Programmable SoC Systems Archicture	2 days
Zynq All Programmable SoC Accelerators	1 day
C Language Programming with SDK	2 days
Embedded Design with PetaLinux SDK	2 days
Embedded C/C++ SDSoC Development	
Environment and Methodology	1 day

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

CORE Vision

NEXT LEVEL EMBEDDED DEVELOPMENT

- VHDL Design for FPGA
- Advanced VDHL
- Comprehensive VHDL
- Expert VHDL Verification
- Expert VDHL Design
- Expert VHDL
- Essential Digital Design Techniques

3 days 2 days 5 days 3 days 2 days 5 days 2 days

E | Vi.