
Testen van Embedded Systemen

Gerard Fianen

“The choice of professionals”

info@indes.com www.indes.com/embedded Tel: 0345 - 545.535

INDES-IDS BV - Embedded Software Development

Test : The V-Model

System requirement analysis

System architecture

System design

Software architecture

Software Implementation

Unit Tests

Integration Tests

System integration

Approval and usage

Unit Test & Code Coverage
Static Analysis

System-level test

Page 4

• What is Unit Test ?

Unit Test & Code Coverage

Page 5

Page 6

Unit Test & Code Coverage

• What is Code Coverage ?

• SC (Statement Coverage)

• BC / DC (Branch / Decision Coverage)

• CC (Condition Coverage)

• MCDC (Modified Control Decision Coverage)

• Build an automatic regression Testsuite

Page 7

Unit Test & Code Coverage

• What is Code Coverage ?

• SC (Statement Coverage)

• BC / DC (Branch / Decision Coverage)

• CC (Condition Coverage)

• MCDC (Modified Control Decision Coverage)

• Build an automatic regression Testsuite

Page 8

Unit Test & Code Coverage
 for embedded systems

• On-Host testing versus On-Target Testing

• Real-Time versus non_Real-Time

Page 9

Unit Test & Code Coverage
 Traditional workflow

Code Source

Code

Static
Analysis

Instrumented

Source

Code

Code
Coverage

Test Result

 Analysis &

Reporting

Test

Harness

Generation

Test

 Case

Generation

Test

Execution

Page 10

static void countProducts(void)
{
 struct CountedProduct * currentCountedProduct;
 uint32_t iProduct = 0U;
 const struct Product * currentProduct;

 ProductDatabase_resetCountedProducts();
 /* iterate over each product that has been scanned */
 while (iProduct < scannedProducts) {
 currentProduct = ShoppingBasket[iProduct];
 if (currentProduct != NULL_POINTER)
 {
 currentCountedProduct = ProductDatabase_getCountedProduct(currentProduct);
 if (currentCountedProduct != NULL_POINTER)
 {
 (currentCountedProduct->count)++;
 }
 }
 iProduct++;
 }
}

Page 11

Page 12

Unit Test & Code Coverage
 Problems with instrumentation

• Often tricky to integrate into the build process

• Code size increases

• Execution times are different

• Not all functions can be tested (drivers)

• Certification of the instrumenter (more complex TQP)

Page 13

Unit Test & Code Coverage
 Alternative approach

• Integrate with the debugger
• Full open API to all debugger functions

• Fully integrated Unit Test creation

• Automate the process

• For coverage : Use Real-Time Trace
• ETM, Nexus, Aurora, Full ICE

Page 14

Benefits

• No instrumenter in the build process

• Test execution on the target system

• Test execution on the production code
• on Machine code level

• Cross compiler v.s. host-compiler

• No test driver / test harness needed

• Continuous code coverage Code coverage

• Fully integrated with Development process
• Development engineer can develop the tests

Page 15

Examples of advanced features

• Compare ‘golden’ with current Real-Time Execution trace

• Combine trace, performance analysis, code coverage and I/O
stimuli with test runs

• Technology may be used for unit, integration and system test

Page 16

System test
 take advantage of the open debugger API

Available Features:
• Debugging:

Download, Run/Stop, Break
Symbol Information
Read/Write Data Access

• Analysis:
Trace
Coverage
Profiling

• IDE and Build System

• All testcases are parametric

winIDEA

isystem.connect

USB / Ethernet

JTAG, LPD, etc.

XCP Master

XCP Plug-In DLL testIDEA

Python
C++
Java

...

DLL

PTSpec

PTSpec DLL

Inter-Process-Communication

Page 17

WinIDEA Debugger

Page 18

System test
 Benefit of using debugger API

• Very easy to do complex tests
• Debugger knows ‘everything’

• Real-time access to memory,
registers, variables, peripherals

• All during Real-Time execution

• Simplifies System test fixtures

• All test cases are parametric

• Easy reuse of test cases

Page 20

Example: Hella (part of CASA@HELLA)

isystem.connect

winIDEA

SSI/SPI User-defined-

sequences

Unit under test

YASE

Sequence editor

PXI-8464

CAN MIO

CPU Emulator

PXI-6070E

MIO

PXI-6070E

analog/
digital

FPGA7831

Firmware

RT-PXI

XML-Testdef.

Test setup (CPLD’s usw.)

TestMaster DB

User-defined tests and test reports

Configuration

Test definition

Measurement

system

FIT Hardware

isystem.connect

winIDEA

SSI/SPI User-defined-

sequences

Unit under test

YASE

Sequence editor

PXI-8464

CAN MIO

CPU Emulator

PXI-6070E

MIO

PXI-6070E

analog/
digital

FPGA7831

Firmware

RT-PXI

XML-Testdef.

Test setup (CPLD’s usw.)

TestMaster DB

User-defined tests and test reports

Configuration

Test definition

Measurement

system

FIT Hardware

Configuration

Test definition

Measurement

system

FIT Hardware

Page 21

Advanced example:

Page 22

iTag.2K

- Cortex-M

- Debug and Trace

iTag.Fifty
- winIDEAOpen
- testIDEA standard

0

EUR

<100

2000

1000 iTag.1K

- winIDEA

- testIDEA Standard

3150

 5000

Performance

… + advanced trace

iC5000/5500

- Multi architecture

- SW License upgrade

<50
WinIDEAS-Open + iFIFY / Segger J-LINK

- Open HW Design – DIY

Wat kost dat ?

Download WinIDEA-OPEN at : http://isystem.com/index.php/download/winideaopen

Page 23

WinIDEA Open
experience the environment yourself

Free Cortex-M software development and test platform supporting iSYSTEM's Cortex Tool iTAG, different 3rd party debug hardware (e.g.,
SEGGER J-Link , ST-LINK, CMSIS-DAP) and a large number of evaluation boards. winIDEA Open supports all major compilers and imposes no
code size restrictions when used with the GNU toolchain (32K others) and is provided with no support. Therefore it is recommended to use
winIDEA Open for evaluation and non-critical projects only.

Overall software features (no time or code size limitations):
Full GNU GCC toolchain 4.7 included
Unlimited code size with GCC compiler
Full featured winIDEA platform:

• Editor & build manager
• Flash programming
• HW and SW breakpoints
• Low and high-level debugging
• Device register view (SFRs)
• Python scripting
• Test tool testIDEA standard included (Unit Test / Code Coverage)
• RTOS aware debugging
• Interoperable with a wide range of tools through isystem.connect API

Optional upgrade to commercial winIDEA build (all compilers supported, full technical support, regular winIDEA updates,
support for new microcontrollers, new winIDEA functionalities, ...). To upgrade, please INDES-IDS BV.

http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://isystem.com/index.php/products/hardware/3rd-party-debugger/segger-j-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/segger-j-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/segger-j-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/st-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/st-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/st-link
http://isystem.com/index.php/products/software/testidea-pro
http://isystem.com/files/isystem.connect/api/
http://isystem.com/files/isystem.connect/api/
http://isystem.com/files/isystem.connect/api/
http://isystem.com/index.php/products/software/winidea
http://isystem.com/index.php/products/software/winidea
http://isystem.com/index.php/products/software/winidea
http://isystem.com/index.php/products/software/winidea
http://isystem.com/index.php/products/software/winidea
http://isystem.com/index.php/products/software/winidea

Page 24

WinIDEA Open

Download WinIDEA-OPEN at : http://isystem.com/index.php/download/winideaopen

winIDEA Open currently supports the iSYSTEM iTAG.ZERO and iTAG.FIFTY as well as various third party debug
hardware such as the SEGGER J-Link , ST-LINK and CMSIS-DAP in conjunction with many evaluation boards, see
http://isystem.com/index.php/products/software/winidea-open

http://isystem.com/index.php/download/winideaopen
http://isystem.com/index.php/download/winideaopen
http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://isystem.com/index.php/products/hardware/cortex-debugger/itag
http://www.indes.com/embedded/en/subsubcategories/16_J-Link_Series_of_J-TAG_Emulators/
http://www.indes.com/embedded/en/subsubcategories/16_J-Link_Series_of_J-TAG_Emulators/
http://www.indes.com/embedded/en/subsubcategories/16_J-Link_Series_of_J-TAG_Emulators/
http://isystem.com/index.php/products/hardware/3rd-party-debugger/st-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/st-link
http://isystem.com/index.php/products/hardware/3rd-party-debugger/st-link
http://isystem.com/index.php/products/software/winidea-open
http://isystem.com/index.php/products/software/winidea-open
http://isystem.com/index.php/products/software/winidea-open
http://isystem.com/index.php/products/software/winidea-open

Voor meer informatie :

Gerard Fianen

gerard@indes.com

Tel : 0345 – 545.535

www.indes.com/embedded

 Page 25

 Page 26

Supporting slides

More detailed information on Unit Test
Debugger knows ‘everything’

Real-time access to memory, registers, variables, peripherals

All during Real-Time execution

More detailed information on Code Coverage using trace

More on Certification

iSYSTEM Test Possibilities

Page 28

testIDEA in conjunction with winIDEA

Pre-configured tests

Test Case Editor

Edit Area

Results

Page 29

testIDEA Basic Configuration

Which core?

What to do?

Which parameter?

Page 30

Input Parameters / Expected Return
Values

Input Parameters can be

 Function Parameters

 Global Variables

 Persistent Variables

Expected Return Value

Set your global variable(s) before a test execution

Define persistent variables (variables valid over several tests)

Set your function input parameters

Define your expected result

Page 31

Input Parameters / Expected Return
Values

Input Parameters can be

 Function Parameters

 Global Variables

 Persistent Variables

Expected Return Value

Test Specification as text:
 - id: FunctionTest
 desc: |-
 My Function Test
 init:
 iCounter: 0
 func: [Mult, [3, 4], retV]
 expect:
 - 'retV == 12'

Page 32

Pre-Conditions

This section contains expressions, which are
evaluated before test case execution is started.

This functionality can be used, when certain
global variables or hardware input values must
match some criteria for test to succeed.

If we detect error early, it is easier to find the
reason for test failure.

Page 33

Stubs

Method stub (From Wikipedia)

A method stub or simply stub in software development is a piece of code used to stand in for some other programming
functionality. A stub may simulate the behavior of existing code (such as a procedure on a remote machine) or be a
temporary substitute for yet-to-be-developed code. Stubs are therefore most useful in porting, distributed computing as
well as general software development and testing.

Typical Use Cases in testIDEA:

1. Replace a function call with a return value -> the function is not called, the return value is set (not real time)

2. Do nothing – a function call is simply ignored (real time)

3. A function call is replaced with another function call (real time). The replaced function is already a part of the downloaded
code.

Page 34

Stubs

Page 35

Test points

Test points pause test execution at any location in the tested code and perform a certain action. This could be

 Anything you can do with a
debugger like read/write
Memory, etc.

 Modify Variables, Function
Calls (-> Fault Injection)

 Logging

 Use a script for modification

Page 36

Test points

Where to stop?

Base could be a file name (module.c) or a function
name.

 Line Number (not recommended because they
could change after a rebuild)

 Search Pattern

 Test ID

Page 37

Dry Run
This functionality can be used to record behavior
of existing and tested target code and use the
result for the next test run.

Dry Run Mode

Page 38

Charts

Flow Chart

A flowchart is a type of diagram that represents
the program flow of the function under test.

The information is based on the downloaded code,
not on the executed code.

In general flowcharts are used in analyzing,
designing, documenting or managing a process or
program in various fields.

Page 39

Charts

Sequence Diagram

A Sequence diagram is an interaction diagram that
shows how processes operate with one another
and what is their order. A sequence diagram
shows object interactions arranged in time
sequence.

The information is based on the profiled data(time
measurement) and shows what was executed and
when during the test execution.

Sequence diagrams are typically associated with use case realizations in the Logical View of the system under development. Sequence
diagrams are sometimes called event diagrams or event scenarios.

Page 40

Charts

Call Graph

A call graph is a directed graph that represents
calling relationships between subroutines in a
computer program.

Call graphs are a basic program analysis result
that can be used for human understanding of
programs, or as a basis for further analyses,
such as an analysis that tracks the flow of
values between procedures.

One simple application of call graphs is finding
procedures that are never called.

Call graphs can be dynamic or static. A dynamic call graph is a record
of an execution of the program, e.g., as output by a profiler. Thus, a
dynamic call graph can be exact, but only describes one run of the
program.

In our case the information is based on the profiled data / executed
code.

Page 41

Analyzer

Any test action in testIDEA can be combined with analyzer functionality:

Coverage

Profiler

Trace

e.g. Nexus @ Power Architecture, ETM @ ARM, ICE

Page 42

Analyzer

Even without trace possibility on the microcontroller, you still have analyzer possibilities:

e.g. S08, S12, ..

Code Coverage Functionality

Today

On-Chip Trace

• ETB / OTB = Embedded / Onchip Trace Buffer

― Limited buffer size (4KB to 1 MB)

― Limited length of recording

• Trace Port (ETM, Nexus, Aurora)
― Limitation depends on external hardware

― Long term recording

― Bandwidth (4-32Bit, LVDS signaling)

Page 45

Sampling Information in the Trace
Buffer I
• A good trace system requires

• An (emulation/umbrella) controller that provides visibility of the internal memory

bus to the outside world (via dedicated trace bus or message port)

• A trace buffer onchip or inside the debug system that stores the information from

the controller and other sources in real-time and for a long time

• A trigger that starts recording at dedicated conditions

• A qualifier / filter that starts / stops recording in certain memory areas

• Store the information in a file for documentation capabilities

Page 46

Sampling Information in the Trace
Buffer II

Same technique and buffer is used for different purposes

• Trace: Record complete instruction flow

• Profiling: Record complete instruction flow and show function

timing
 mixed with data

• Coverage: Record complete instruction flow and check
 against source code and determine for every instruction if executed or not

Page 47

What is Code Coverage?

Code Coverage is a measure used in software testing.

You measure

• The quality of your code

• The size of executed code by a set of test cases

• The quality of your test cases

All Coverage Results at iSYSTEM are based on executed object code!

Page 48

Types of Coverage

• Statement Coverage
• marks statements or instructions as executed or not executed based on lines and based on object

code size

Page 49

Types of Coverage

• Condition Coverage
• Marks conditional branch instructions or conditional statements as

• Executed
• branch taken
• branch not taken
• both paths covered

Page 50

Types of Coverage

• Call Coverage
• Each (function) call is reported

Page 51

How is Code Coverage executed?

Source Code

Compilation

Object Code

Linking

Executable Code

Test Execution

Source Code Coverage

Coverage Analysis

Object Code Coverage

Trace Analysis

Execution Trace

Debug Information

Page 52

How is Code Coverage executed?

In Words:

program execution + iSYSTEM tools
 = program trace

program trace + disassembler information
 = object code coverage

object code coverage + debug information
 = source code coverage

Page 53

Code Coverage in practice

• The amount of time a coverage session can run depends on
• The trace buffer size

• Trace port or onchip trace buffer

• The upload speed to the PC

• Upload while sampling possibility

• CPU speed / Trace Port Speed

• Object code level results are mostly conclusive, except
• Arithmetic op-codes are used instead of logical ones

 -> the conditional outcomes are undetectable (at least in real-time trace)

• Possible Limitations of Source Code Coverage

 Object code does not correspond to the source code because of
• Compiler optimization

• Complex conditions

• Libraries

• Conversion

Page 54
Code Coverage Result

Non-optimized

Page 55
Code Coverage Result

Optimized

Page 56

Code Coverage Execution

• Setup is a typical debug scenario

• winIDEA (debug IDE)

• Blue Box for debuging

• Target

• Trace is mandatory

• Needed for coverage

Code Coverage based on executed Op-Code Source Code Coverage

Debug Information

Page 57

• Features
• Analysis of the trace buffer and comparison to the source code, specifically for

all addresses executed while application is running (execution coverage)
• Creates reports to be used for certification documents

• Usage
• Statement coverage (executed / not executed)
• Condition coverage (analysis of conditional branch instructions and statements)
• Call Coverage (analysis of call instructions)
• Off-line operation mode (analysis after recording)

• Benefits
• Coverage of NON-INSTRUMENTED and optimized code over a long period of time
• Identify “dead” code
• Save, and RESTART or CONTINUE coverage sessions
• Report/Export format: HTML, XML, text
• Remote control and automate coverage sessions with iSYSTEM’s API

Summary
Code Coverage

Test Report Generation

Page 59

Test Report Generation

Page 60

Test Report - Overview

Page 61

Test Report – Individual Results

Do not hestitate to contact us for more information.
Unit Test with Code Coverage

Tel: +31 – 345-545.535 / gerard@indes.com / www.indes.com

mailto:gerard@indes.com
mailto:gerard@indes.com
mailto:gerard@indes.com

