DESIGN AUTOMATION EMBEDDED SYSTEMS

2 NOV 1931 CONGRESCENTRUM BRABANTHALLEN DEN BOSCH

FPGA - SECURITY - EMBEDDED - INTERNET OF THINGS - PCB TECHNOLOGIEEN - BLUETOOTH LE - ELECTRONIC DESIGN & PRODUCTION

M2.COM Open Standard for IoT Applications

Bernd Hacker Advantech Europe B.V. November 2nd, 2016

Enabling an Intelligent Planet

2016

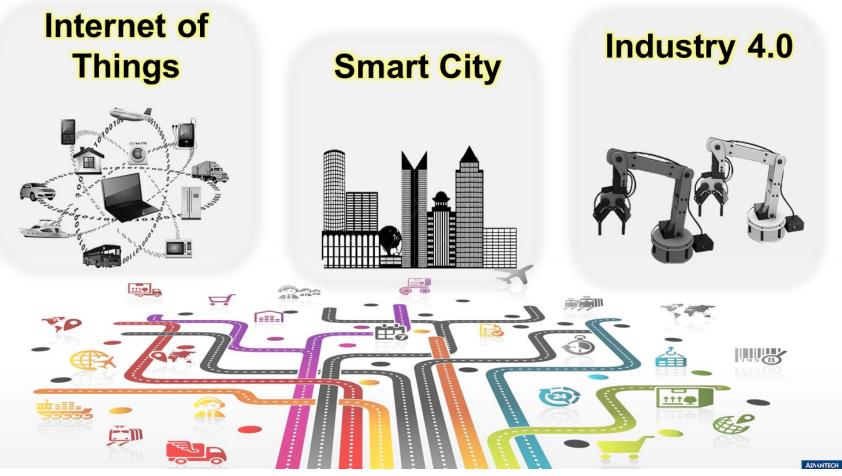
Advantech

at a Glance Advantech defines its brand mission as "Enabling an Intelligent Planet", to empower innovative technologies

- Headquarters
 Taipei, Taiwan
- Established May, 1983

and solutions.

- Employees
 8,000
- Revenue USD \$1,201M (2015)



2NOV C BRABANTHALLEN DEN BOSCH 2016

Mega Trends of Industries

BRABANTHALLEN DEN BOSCH

The IoT Challenge

Data from sensors, is getting more and more important and of interest.

This is challenging manufactures of sensors and System Integrators (SI), to provide for a wide field of applications and markets newest sensor technologies and fast innovation cycles.

Wireless technologies play a key role to connect Sensors to the Internet, but at the same time challenging from an integration and certification point of view.

Enabling an Intelligent Planet

Challenges of deployment

Local regulations and certifications

Reuse or replacement of existing infrastructure and solutions

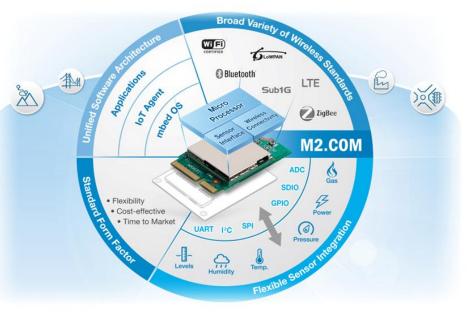
Low power solution/design for battery operation

Time to market and ROI

Various wireless technologies / protocols - each with their own value proposition

Low Power Wide Area Networks (LPWAN)						Short Range Networks			
Technical	LoRa WAN	nwave	SIGFOX	@	Bluetooth [®]	WIFI	Grhread	ZigBee'	
	2-5 urban; 15 suburban; 45 rural	up to 10 km	up to 10km urban; 50 km rural	35 km GSM; 200 km 3G/4G	80m	50m	Mesh	100m / Mesch	
Frq. Band	varies; Sub-GHz	Sub-GHz	Freq, independent; 868/902 MHz	900/1800/1900/21 00 MHz	2.4GHz	2.4GHz	2.4GHz	915MHz/ 2.4GHz	
Deep Indoor Performance	Yes	Yes	Yes	No	No	No	No	_	
Data Rate	0.3-50 kbps adaptive	10 - 100 kbps	10 - 1000 bps	75 - 170 kps GSM/ 3 -10 mbps LTE	< 1 mbps	600 mbps max.	_	250 kbps	
Power Profile	Low	Low	Low	Medium	High	High	Low	Low	

Enabling an Intelligent Planet



M2.COM Standardization

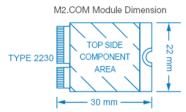
http://www.m2com-standard.org

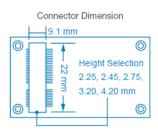
Integration of

- Computing
- Wireless Connectivity
- Sensor

Benefit

Proven Hardware - certification ready / certified Module Unified Connectivity Module for Sensor Makers Improved Time to Market


Enabling an Intelligent Planet

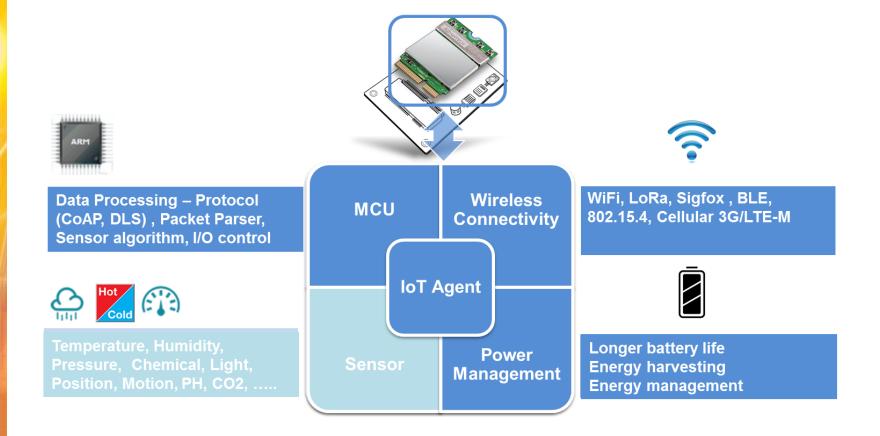


ADVANTECH

M2.COM Standardization

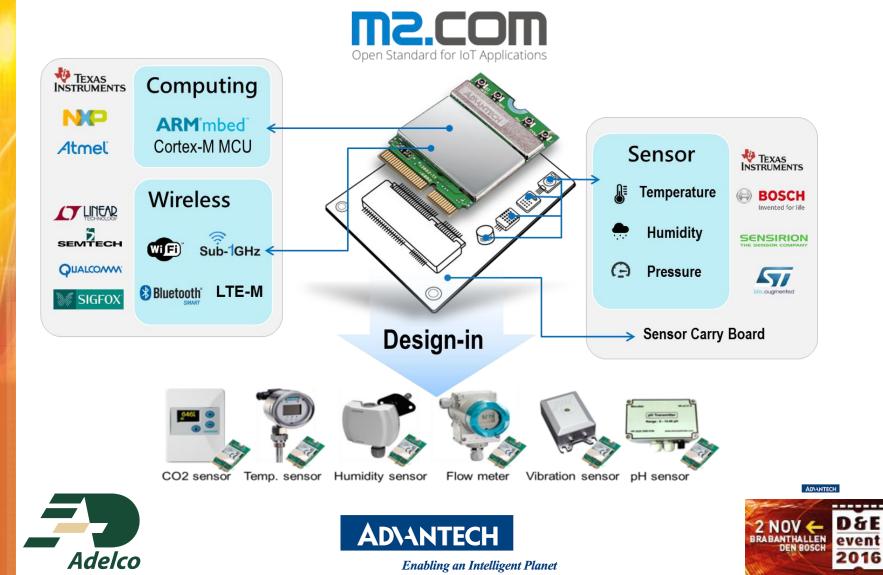
- Leverage PCI M.2 format & connector
- Dedicated Pin Definitions for M2.COM

Signal	Purpose
USB	A common interface for extending storage.
PWM	Motor control and power supply control.
SDIO	A common interface for extending storage through SD/MMC.
I ² C	The most popular interface for sensors e.g., pressure, temperature, moisture, and lighting sensors.
I ² S	Supports audio codecs for broadcasting and playing audio through external
UART	A commonly used protocol for device control, such as motors and electrical
GPIO	Basic I/O control, such as indicator lights, alarms, and buzzers.
SPI	LCM support to display values collected from the sensor or transmitted by an external device.
ADC	Using common GPIO pins, the ADC transforms the analog signal from the sensor into a digital signal, making the data readable and meaningful to the

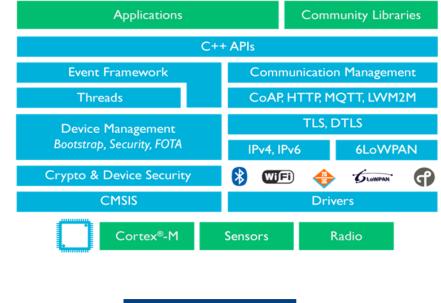


Enabling an Intelligent Planet

IoT Sensor Node Building Block

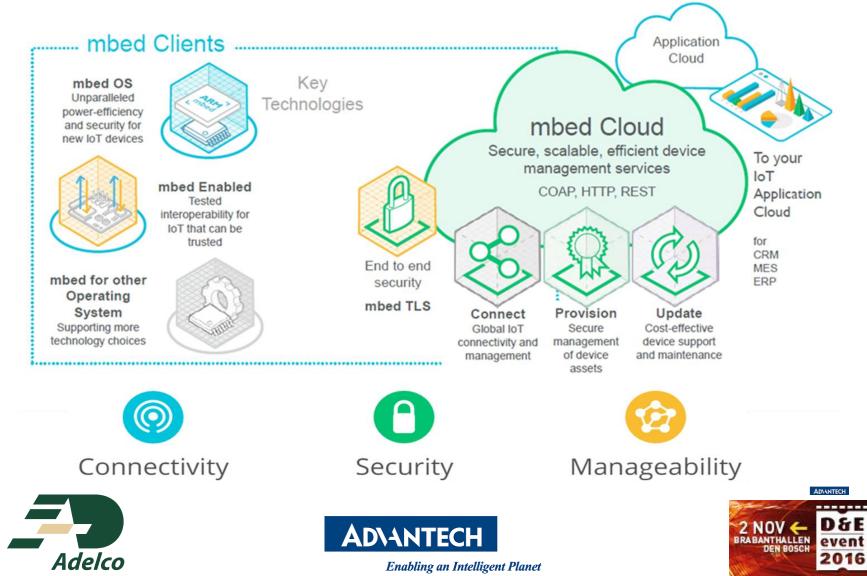


Enabling an Intelligent Planet

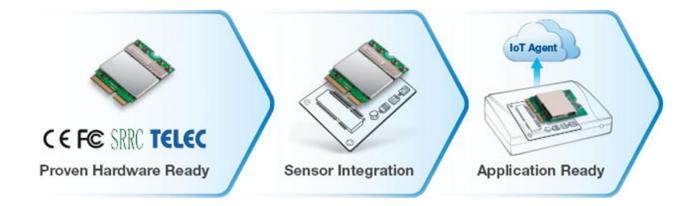


Open Wireless Sensor Node Platform

Unified Software for IoT Sensor Platform



Enabling an Intelligent Planet



M2.COM with mbed OS & mbed Cloud

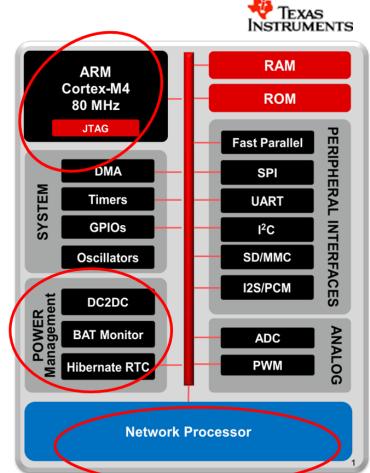
M2.COM Business Model

Streamlined IoT Sensor Platform Development

Enabling an Intelligent Planet

WISE-1520 / CC 3200MDO

Applications Microcontroller (extract)

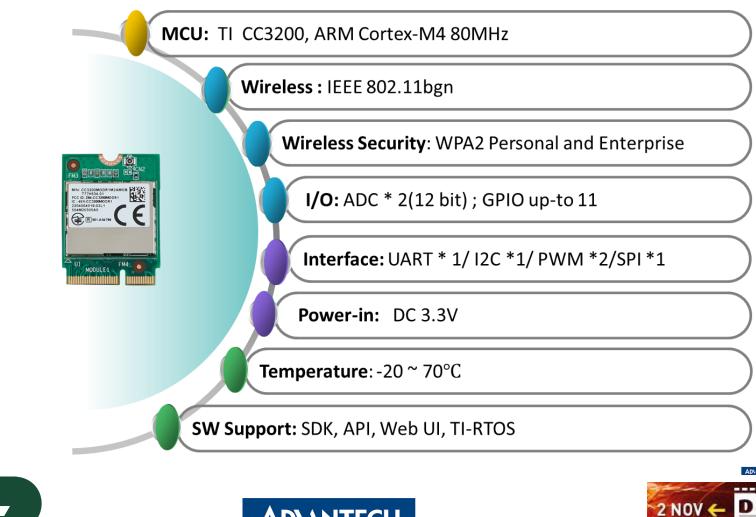

- ARM® Cortex®-M4 Core at 80 MHz
- RAM 256 KB; SPI Flash 1 MB
- Hardware Crypto Engine for Advanced Fast Security, including AES, DES, and 3DES, SHA2 and MD5, CRC and checksum

Wi-Fi Network Processor Subsystem (extract)

- 802.11b/g/n Radio, Baseband, and Medium Access Control
- TCP/IP Stack
- Powerful Crypto Engine for Fast, Secure Wi-Fi and Internet Connections with 256-Bit AES Encryption for TLS and SSL Connections
- Station, AP, and Wi-Fi Direct[™] Modes
- WPA2 Personal and Enterprise Security

Power-Management Subsystems (extract)

- Advanced Low-Power Modes
 - Hibernate: 4 µA
 - Low-Power Deep Sleep < 275 μA
 - RX Traffic (MCU Active): 59 mA @ 54 OFDM
 - TX Traffic (MCU Active): 229 mA @ 54 OFDM, Maximum Power
 - Idle Connected (MCU in LPDS): 825 µA @ DTIM = 1



ADVANTECH

M2.COM WISE-1520 WIFI IoT Node

WISE IoT Agent "Lite"

"Lite" version

- Reduced code size for ARM MCU's
- Only key functions implemented

WISE-Agent basic function

- Read sensor data
- Processing data with RMM readable format

Benefits

- Adopted to MCU ROM/RAM size
- Cloud ready sample code
- SKD/Sample code for customized development

//initial WiseAgent_Init(ip, mac); if(WiseAgent_Open(SERVER_ADDRESS) == 0) { //Error and return return; } else { //Register a SenHub "OnBoard" WiseAgent_RegisterSensor(SN_MACADDRESS, "OnBoard", infospec, 2); }

for(;;) {

//Get Sensor Data from internal interface. GetSensorData(&Temperature, &Humidity);

//Update data
data[0].value = Temperature;
data[1].value = Humidity;
WiseAgent_Write(SN_MACADDRESS, data, 2);

//deLay 3s
usleep(3000);

Enabling an Intelligent Planet

Summary

- Copen Standard for IoT applications
- Certified Wireless Module
- ARM mbed Software
- Improved time to market

Enabling an Intelligent Planet

Thank You

Adelco Electronics Your Display, Embedded & Wireless Solution Provider

NL: +31 (0)10-2580580 BE: +32 (0)3 3374499 www.adelco.nl

