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FPGAs prevalent in Embedded Systems

• Embedded Systems often need hardware acceleration
• Hardware needs to be targeted to specific system but 

flexible enough for updates/improvements
– ASICs are very power efficient but no flexibility
– FPGAs cost-effective for relatively low volumes
– Additional benefit: reconfigurability
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Current trends in High Performance Comp.

• More and more heterogeneous compute nodes
– CPU, GPU, ASIP, also FPGA
– Hardware acceleration often required

• Hardware has to be flexible
– ASICs are very power efficient but no flexibility
– Current datacenters: require configurability

FPGAs on the rise

• In future systems
– Power requirements will demand dynamic circuit 

specialization, i.e., optimizations within tasks
– Run-time reconfiguration will be main driver
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FPGA configurability
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FPGA configurability
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Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?
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Run-Time Reconfiguration?

• Yesterday: configurability on a large time scale
– Prototyping
– System update
– ...

• Today: configurability on a smaller time scale
– Dynamic circuit specialization

• Frequently changing (regular) inputs vs. infrequently changing 
parameters

• Parameters trigger a reconfiguration (through configuration manager)
– Goals:

• Improve performance
• Reduce area
• Minimize design effort
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Conventional Tool Flow
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Dynamic Circuit 
Specialization not feasible!

• Application where part of the input data changes 
infrequently
– Conventional implementation (no reconfiguration): 

Generic circuit, Store data in memory, Overwrite memory
– Dynamic circuit specialization: 

Reconfigure with configuration specialized for the data

• Example: Adaptive FIR filter (16-tap, 8-bit 
coefficients)

...

2128 possible
configurations!
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Our solution: Parameterized Configuration

Parameterized
Configuration

{ 0  1  0  A+B AB A 1 }

* K. Bruneel and D. Stroobandt, “Automatic Generation of Run-time Parameterizable Configurations,” FPL 2008.
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{ 0  1  0   0 0 0 1 }
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{ 0  1  0  1 1 1 1 }

Parameters
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Two stage approach
• Off-line stage:

– In:     Generic functionality
• Specification of the generic functionality
• Distinction regular and parameter inputs

– Out:  Parameterizable Configuration
• Software function
• outputs specialized configurations for given 

parameter values

• On-line stage:
– In: Parameter values
– Evaluate parameterizable configuration
– Out:  Specialized Configuration
– Repeat every time parameters change
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Param. Configuration Tool Flow
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Param. HDL

Synthesis*

Tech. Mapping*

Place* & Route*

Param. Config.

• Tunable truth table bits
– Adapted Tech. Mapper: TMAP
– Map to Tunable LUTs (TLUTs)
– [FPL2008], [ReConFig2008], 

[DATE2009]

• Tunable routing bits
– Adapted Tech. Mapper
– Adapted Placer
– Adapted Router



entity multiplexer is
port(

--BEGIN PARAM
sel : in  std_logic_vector(1 downto 0);
--END PARAM
in  : in  std_logic_vector(3 downto 0);
out : out std_logic

);
end multiplexer;

architecture behavior of multiplexer is
begin

out <= in(conv_integer(sel));
end behavior;

Parameterizable HDL design
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*: old results on Virtex-II Pro device

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq. 
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.
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Less area (-56%)
– More functionality in one TLUT
– Functionality is moved to the tuning functions

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq. 
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.
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Higher clock frequency (+37%)
– Less LUTs can be placed closer together
– Less congestion because less nets

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq. 
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.
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Reduced generation time (5 orders)
– No NP-hard problems (place and route) at run-time
– Only evaluation of the tuning functions

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq. 
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.
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Less memory (only 29kB)
– TMAP flow finds similarity between configurations
– Compressed form of all configurations

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq. 
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.
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Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?
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Dynamic Circuit Specialization (DCS)
Identifying applications that might benefit from DCS is hard 
for the designer:

• Know the application very well 
(What are the infrequently changing signals?)

• Be very familiar with Circuit Specialization
(What is the impact of choosing these parameters?)

Requires a lot of low level work

In general, DCS results are hard to predict without actually 
making the DCS implementation
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Dynamic Circuit Specialization (DCS)

Solution: Methodology for identifying DCS opportunities.

How?
• By comparing all DCS implementations of the same 

application

Two problems:
• How to compare different DCS implementations?
• Too many possible implementations (one for every 

possible set of parameters)

24



How to compare implementations?
Use the Functional Density as a measure for 
implementation efficiency.

퐹퐷 =
푁
푇 ∙ 퐴

A: The area needed 
T: The total execution time
N: The number of operations

*A. M. Dehon, Reconfigurable architectures for general- purpose computing,
Massachusetts Institute of Technology, 1996.
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Parameter Selection

Avg. Time between parameter changes (clock cycles)
Functional Density (O

ps/s/LU

Ts)
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Profiling the RTL

The DCS-RTL profiler, in three steps:
1. List parameter candidates and their dynamic 

behavior. 
(Using a test bench with real-life data)

2. Reduce the number of parameter candidates

3. Calculate the functional density for each 
remaining parameter candidate
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Execution Time
3 RTL-DCS Profiler implementations:

1. Exact FD calculation, no parameter pruning
2. Exact FD calculation, with parameter pruning
3. Estimated FD, without running Place and Route

Test machine: Intel Core i7-3770 3.40GHz CPU with 32 GB of RAM
Target: Virtex-5 FPGA (XC5VFX70T-1FF1136) 
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Profiling Quality
Would DCS be beneficial?

*SRL-reconfiguration is beneficial, HWICAP not

Design Calc. FD Calc. FD w. Prun. Est. FD

16-tap FIR (8 bit) Yes Yes Yes

32-tap FIR (8 bit) Yes* Yes* Yes*

16-tap FIR (16 bit) Yes* Yes* Yes*

32-tap FIR (16 bit) Yes* Yes* Yes*

RC6 encry. Yes Yes Yes

RC6 decry. Yes Yes Yes

Twofish 128 No No No

Twofish 192 No No No

Twofish 256 No No No

Pipelined AES No No No

29



Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?
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31EXTRA Consortium Proprietary

The EXTRA Project

• Exploiting eXascale Technology with Reconfigurable 
Architectures

• Main objective:
– Develop an open source research platform for continued research 

on reconfiguration architecture and tools

• Develop and program HW with run-time reconfiguration as 
a design concept

• Enable joint optimization of architecture, tools, applications 
and reconfigurable technology

• Prepare the HPC hardware nodes of the future



32EXTRA Consortium Proprietary

EXTRA project structure

The basis of 
further work in 
the project

Open source 
platform for 
researchers

Improvements
using the 
platform
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Open research platform
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Conclusions
• Run-time reconfiguration will be required in future HPC 

systems.
• Parameterized run-time reconfiguration allows dynamic 

circuit specialization.
• Parameter Pruning and FD estimate greatly reduce time 

required for DCS profiling, but still allow correct 
identification of DCS opportunities.

• Practical implementations work and are being explored 
in open research platform of the EXTRA project.
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Last slide

• Much of this work was done in the framework of the EU-
FP7 project FASTER

• Current work (open research platform) is part of the EU-
H2020 project EXTRA (www.extrahpc.eu)

• Questions?

• Tools at https://github.com/UGent-HES/tlut_flow
• More information: http://hes.elis.ugent.be/

38


