
Dynamische circuitspecialisatie
als stap naar

efficiënter hardware-ontwerp
van de toekomst

Prof. Dirk Stroobandt, Universiteit Gent, België
Hardware and Embedded Systems group

Presentatie op Embedded Systems event – 2 november 2016

FPGAs prevalent in Embedded Systems

• Embedded Systems often need hardware acceleration
• Hardware needs to be targeted to specific system but

flexible enough for updates/improvements
– ASICs are very power efficient but no flexibility
– FPGAs cost-effective for relatively low volumes
– Additional benefit: reconfigurability

2

Current trends in High Performance Comp.

• More and more heterogeneous compute nodes
– CPU, GPU, ASIP, also FPGA
– Hardware acceleration often required

• Hardware has to be flexible
– ASICs are very power efficient but no flexibility
– Current datacenters: require configurability

FPGAs on the rise

• In future systems
– Power requirements will demand dynamic circuit

specialization, i.e., optimizations within tasks
– Run-time reconfiguration will be main driver

3

FPGA configurability

4

FF
L
U
T

0

1

1

0

1

0

0

1

0

0

0

0

1

0

1

1

1

0

FPGA configurability

5

1 0

0 0

1
0

1 0

0 1

0
0

Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?

6

Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?

7

Run-Time Reconfiguration?

• Yesterday: configurability on a large time scale
– Prototyping
– System update
– ...

• Today: configurability on a smaller time scale
– Dynamic circuit specialization

• Frequently changing (regular) inputs vs. infrequently changing
parameters

• Parameters trigger a reconfiguration (through configuration manager)
– Goals:

• Improve performance
• Reduce area
• Minimize design effort

8

Configuration Interface

config.
DB

Configuration
Manager

Application
Software

Reconfiguration
Request

CPU

config.
DBF1F2

Static

Conventional Dynamic Reconfiguration

FPGA

F1F2

config.
DB

DynamicF1F2

9

Conventional Tool Flow

F1 HDL

Static HDL
Design

F2 HDL

Synthesis

Synthesis

Synthesis

Tech.
Mapping

Tech.
Mapping

Tech.
Mapping

Place
&
Route

Place
&
Route

Place
&
Route

Static
Config.

F1
Config.

F2
Config.… …

10

Dynamic Circuit
Specialization not feasible!

• Application where part of the input data changes
infrequently
– Conventional implementation (no reconfiguration):

Generic circuit, Store data in memory, Overwrite memory
– Dynamic circuit specialization:

Reconfigure with configuration specialized for the data

• Example: Adaptive FIR filter (16-tap, 8-bit
coefficients)

...

2128 possible
configurations!

11

Our solution: Parameterized Configuration

Parameterized
Configuration

{ 0 1 0 A+B AB A 1 }

* K. Bruneel and D. Stroobandt, “Automatic Generation of Run-time Parameterizable Configurations,” FPL 2008.

0 1

1 0

1 1

0 0
A B

Specialized
Configurations

{ 0 1 0 0 0 0 1 }

{ 0 1 0 1 0 0 1 }

{ 0 1 0 1 0 1 1 }

{ 0 1 0 1 1 1 1 }

Parameters

12

config.
DB

Configuration
Manager

Application
Software

Reconfiguration
Request

FPGA

Configuration Interface

config.
DB

CPU

FIR

Dynamic Circuit
Specialization (micro-reconfiguration)

FIR(4,9)

Static

DynamicFIR

FIR(2, 8)

config.
DB

13

Two stage approach
• Off-line stage:

– In: Generic functionality
• Specification of the generic functionality
• Distinction regular and parameter inputs

– Out: Parameterizable Configuration
• Software function
• outputs specialized configurations for given

parameter values

• On-line stage:
– In: Parameter values
– Evaluate parameterizable configuration
– Out: Specialized Configuration
– Repeat every time parameters change

14

Generic
Functionality

Off-line Stage

On-line Stage

Parameterizable
Configuration

Specialized
Configuration

Param. Configuration Tool Flow

15

Param. HDL

Synthesis*

Tech. Mapping*

Place* & Route*

Param. Config.

• Tunable truth table bits
– Adapted Tech. Mapper: TMAP
– Map to Tunable LUTs (TLUTs)
– [FPL2008], [ReConFig2008],

[DATE2009]

• Tunable routing bits
– Adapted Tech. Mapper
– Adapted Placer
– Adapted Router

entity multiplexer is
port(

--BEGIN PARAM
sel : in std_logic_vector(1 downto 0);
--END PARAM
in : in std_logic_vector(3 downto 0);
out : out std_logic

);
end multiplexer;

architecture behavior of multiplexer is
begin

out <= in(conv_integer(sel));
end behavior;

Parameterizable HDL design

16

in0

in1

in2

in3

sel0

sel1

out

*: old results on Virtex-II Pro device

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq.
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.

17

Less area (-56%)
– More functionality in one TLUT
– Functionality is moved to the tuning functions

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq.
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.

18

1301 (-56%)

Higher clock frequency (+37%)
– Less LUTs can be placed closer together
– Less congestion because less nets

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq.
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.

19

1301 (-56%)

115 (+37%)

Reduced generation time (5 orders)
– No NP-hard problems (place and route) at run-time
– Only evaluation of the tuning functions

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq.
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.

20

1301 (-56%)

115 (+37%)

0.166

Less memory (only 29kB)
– TMAP flow finds similarity between configurations
– Compressed form of all configurations

Experiment: 16-tap FIR, 8-bit coefficients*

Generic Parameterizable
configuration Specialized

area (LUTs) 2999 1146

clock freq.
(MHz) 84 119

gen. time (ms) 0 35634

memory (kB) 0 2128 conf.

21

1301 (-56%)

115 (+37%)

0.166

29

Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?

22

Dynamic Circuit Specialization (DCS)
Identifying applications that might benefit from DCS is hard
for the designer:

• Know the application very well
(What are the infrequently changing signals?)

• Be very familiar with Circuit Specialization
(What is the impact of choosing these parameters?)

Requires a lot of low level work

In general, DCS results are hard to predict without actually
making the DCS implementation

23

Dynamic Circuit Specialization (DCS)

Solution: Methodology for identifying DCS opportunities.

How?
• By comparing all DCS implementations of the same

application

Two problems:
• How to compare different DCS implementations?
• Too many possible implementations (one for every

possible set of parameters)

24

How to compare implementations?
Use the Functional Density as a measure for
implementation efficiency.

퐹퐷 =
푁
푇 ∙ 퐴

A: The area needed
T: The total execution time
N: The number of operations

*A. M. Dehon, Reconfigurable architectures for general- purpose computing,
Massachusetts Institute of Technology, 1996.

25

Parameter Selection

Avg. Time between parameter changes (clock cycles)
Functional Density (O

ps/s/LU

Ts)

26

Profiling the RTL

The DCS-RTL profiler, in three steps:
1. List parameter candidates and their dynamic

behavior.
(Using a test bench with real-life data)

2. Reduce the number of parameter candidates

3. Calculate the functional density for each
remaining parameter candidate

27

Execution Time
3 RTL-DCS Profiler implementations:

1. Exact FD calculation, no parameter pruning
2. Exact FD calculation, with parameter pruning
3. Estimated FD, without running Place and Route

Test machine: Intel Core i7-3770 3.40GHz CPU with 32 GB of RAM
Target: Virtex-5 FPGA (XC5VFX70T-1FF1136)

28

Profiling Quality
Would DCS be beneficial?

*SRL-reconfiguration is beneficial, HWICAP not

Design Calc. FD Calc. FD w. Prun. Est. FD

16-tap FIR (8 bit) Yes Yes Yes

32-tap FIR (8 bit) Yes* Yes* Yes*

16-tap FIR (16 bit) Yes* Yes* Yes*

32-tap FIR (16 bit) Yes* Yes* Yes*

RC6 encry. Yes Yes Yes

RC6 decry. Yes Yes Yes

Twofish 128 No No No

Twofish 192 No No No

Twofish 256 No No No

Pipelined AES No No No

29

Outline

• What is Parameterized Run-time Reconfiguration?
• Profiling your applications for parameters
• How to put this in practice?

30

31EXTRA Consortium Proprietary

The EXTRA Project

• Exploiting eXascale Technology with Reconfigurable
Architectures

• Main objective:
– Develop an open source research platform for continued research

on reconfiguration architecture and tools

• Develop and program HW with run-time reconfiguration as
a design concept

• Enable joint optimization of architecture, tools, applications
and reconfigurable technology

• Prepare the HPC hardware nodes of the future

32EXTRA Consortium Proprietary

EXTRA project structure

The basis of
further work in
the project

Open source
platform for
researchers

Improvements
using the
platform

33EXTRA Consortium Proprietary

Open research platform

EXTRA toolchain
App. analysis and
transformationHardware

platform
model

Supercomputer 7

HW
prototype(s)

6

Accelerated app.
prototype

5

Performance
monitoring

and
prediction

3

1

2 4

Application specification
and requirements

Hardware platform
requirements

34EXTRA Consortium Proprietary

Open research platform

EXTRA toolchain
App. analysis and
transformationHardware

platform
model

Supercomputer 7

HW
prototype(s)

6

Accelerated app.
prototype

5

Performance
monitoring

and
prediction

3

App. code Data
Hardware platform

requirements
Hardware platform

requirements k1
k2

k4
k5

k3 k6
App. specification

1

2 4

35EXTRA Consortium Proprietary

Open research platform

EXTRA toolchain
App. analysis and
transformationHardware

platform
model

Supercomputer 7

HW
prototype(s)

6

Accelerated app.
prototype

5

Performance
monitoring

and
prediction

3

App. code Data
Hardware platform

requirements
Hardware platform

requirements k1
k2

k4
k5

k3 k6
App. specification

1

HW platform model

Simulator

?
2 4

36EXTRA Consortium Proprietary

Open research platform

EXTRA toolchain
App. analysis and
transformationHardware

platform
model

Supercomputer 7

HW
prototype(s)

6

Accelerated app.
prototype

5

Performance
monitoring

and
prediction

3

App. code Data
Hardware platform

requirements
Hardware platform

requirements k1
k2

k4
k5

k3 k6
App. specification

1

HW platform model

Simulator

?
2

Performance
monitoring and

prediction

High-level
Performance

model

Scalability
profile

Performance
bounds

4

Conclusions
• Run-time reconfiguration will be required in future HPC

systems.
• Parameterized run-time reconfiguration allows dynamic

circuit specialization.
• Parameter Pruning and FD estimate greatly reduce time

required for DCS profiling, but still allow correct
identification of DCS opportunities.

• Practical implementations work and are being explored
in open research platform of the EXTRA project.

37

Last slide

• Much of this work was done in the framework of the EU-
FP7 project FASTER

• Current work (open research platform) is part of the EU-
H2020 project EXTRA (www.extrahpc.eu)

• Questions?

• Tools at https://github.com/UGent-HES/tlut_flow
• More information: http://hes.elis.ugent.be/

38

