UNIVERSITEIT
GENT

FACULTEIT INGENIEURSWETENSCHAPPEN

Dynamische circuitspecialisatie

als stap naar
efficienter hardware-ontwerp

van de toekomst

Prof. Dirk Stroobandt, Universiteit Gent, Belgié
Hardware and Embedded Systems group

Presentatie op Embedded Systems event — 2 november 2016

FPGAs prevalent in Embedded Systems

e Embedded Systems often need hardware acceleration

e Hardware needs to be targeted to specific system but
flexible enough for updates/improvements
— ASICs are very power efficient but no flexibility
— FPGAs cost-effective for relatively low volumes
— Additional benefit: reconfigurability

Current trends in High Performance Comp.

e More and more heterogeneous compute nodes
— CPU, GPU, ASIP, also FPGA
— Hardware acceleration often required

e Hardware has to be flexible

— ASICs are very power efficient but no flexibility
— Current datacenters: require configurability

mmmmmmmm) FPGAs on the rise

e |n future systems

— Power requirements will demand dynamic circuit
specialization, i.e., optimizations within tasks

— Run-time reconfiguration will be main driver

FPGA configurability

_ ololcIFIcIHIEIE b -
e — — e

H

- A4 A4 - T -

FPGA configurability

Outline

e What is Parameterized Run-time Reconfiguration?
e Profiling your applications for parameters
e How to put this in practice?

Outline

e What is Parameterized Run-time Reconfiguration?

Run-Time Reconfiguration?

e Yesterday: configurability on a large time scale
— Prototyping
— System update

e Today: configurability on a smaller time scale

— Dynamic circuit specialization

e Frequently changing (regular) inputs vs. infrequently changing
parameters

e Parameters trigger a reconfiguration (through configuration manager)
— Goals:
e Improve performance

e Reduce area
e Minimize design effort

Conventional Dynamic Reconfiguration

FPGA

Configuration Interface

Conventional Tool Flow

10

Dynamic Circuit
Specialization not feasible!

e Application where part of the input data changes
infrequently
— Conventional implementation (no reconfiguration):
Generic circuit, Store data in memory, Overwrite memory
— Dynamic circuit specialization:
Reconfigure with configuration specialized for the data
e Example: Adaptive FIR filter (16-tap, 8-bit

coefficients) 2178 possible
O ‘ ‘ configurations!

oy

Our solution: Parameterized Configuration

A B

Parameters 0O O {0100001}

0 1 (0101001}

vV Vv
{010A+B AB A 1}

1 0 (0101011}

1 1 {01011 11}

Parameterized

. . Specialized
Configuration

Configurations

* K. Bruneel and D. Stroobandt, “Automatic Generation of Run-time Parameterizable Configurations,” FPL 2008.

Dynamic Circuit
Specialization (micro-reconfiguration)

FPGA

FIR(2, 8)

Configuration Interface

13

Two stage approach

e Off-line stage:

— In: Generic functionality
e Specification of the generic functionality
e Distinction regular and parameter inputs

— Out: Parameterizable Configuration

e Software function

e outputs specialized configurations for given
parameter values

e On-line stage:
— In: Parameter values
— Evaluate parameterizable configuration
— QOut: Specialized Configuration
— Repeat every time parameters change

14

Param. Configuration Tool Flow

O)
C)O
O

o % o

o
OO
@

0%

e Tunable truth table bits
— Adapted Tech. Mapper: TMAP
— Map to Tunable LUTs (TLUTS)

— [FPL2008], [ReConFig2008],
[DATE2009]

e Tunable routing bits
— Adapted Tech. Mapper
— Adapted Placer
— Adapted Router

15

Parameterizable HDL design

T

entity multiplexer is
port (
--BEGIN PARAM
sel : in std logic vector(l downto 0);

--END PARAM
in : in std_logic_vector(3 downto 0);
out : out std logic

)5

end multiplexer;

architecture behavior of multiplexer is
begin

out <= in(conv_integer(sel));
end behavior;

16

Experiment: 16-tap FIR, 8-bit coefficients™

Parameterizable

Generic configuration Specialized
area (LUTs) 2999 1146
(Cll\jl’;kz)f "eq. 34 119
gen. time (ms) 0 35634
memory (kB) 0 2128 conf.

*: old results on Virtex-1l Pro device

Experiment: 16-tap FIR, 8-bit coefficients™

Parameterizable

Generic configuration Specialized
area (LUTs) 2999 1301 (-56%) 1146
(Cll\jl’;';)f "eq. 34 119
gen. time (ms) 0 35634
memory (kB) 0 2128 conf.

Less area (-56%)

— More functionality in one TLUT
— Functionality is moved to the tuning functions

Experiment: 16-tap FIR, 8-bit coefficients™

Parameterizable

Generic configuration Specialized
area (LUTs) 2999 1301 (-56%) 1146
z:ll\;;kz)freq- 24 115 (+37%) 119
gen. time (ms) 0 35634
memory (kB) 0 2128 conf.

Higher clock frequency (+37%)
— Less LUTs can be placed closer together
— Less congestion because less nets

Experiment: 16-tap FIR, 8-bit coefficients™

Parameterizable

Generic . . Specialized
configuration
area (LUTs) 2999 1301 (-56%) 1146
clock freq. 115 (+37%)
(MHz2) 84 119
. 0.166
gen. time (ms) 0 35634
memory (kB) 0 2128 conf.

Reduced generation time (5 orders)
— No NP-hard problems (place and route) at run-time
— Only evaluation of the tuning functions

Experiment: 16-tap FIR, 8-bit coefficients™

Parameterizable

Generic . . Specialized
configuration
area (LUTs) 2999 1301 (-56%) 1146
clock freq. 115 (+37%)
(MHz2) 84 119
. 0.166
gen. time (ms) 0 35634
29
memory (kB) 0 2128 conf.

Less memory (only 29kB)
— TMAP flow finds similarity between configurations
— Compressed form of all configurations

Outline

e Profiling your applications for parameters

Dynamic Circuit Specialization (DCS)

ldentifying applications that might benefit from DCS is hard
for the designer:

 Know the application very well
(What are the infrequently changing signals?)

* Be very familiar with Circuit Specialization
(What is the impact of choosing these parameters?)

» Requires a lot of low level work

In general, DCS results are hard to predict without actually
making the DCS implementation

Dynamic Circuit Specialization (DCS)

Solution: Methodology for identifying DCS opportunities.

How?

* By comparing all DCS implementations of the same
application

Two problems:
* How to compare different DCS implementations?

 Too many possible implementations (one for every
possible set of parameters)

How to compare implementations?

Use the Functional Density as a measure for
implementation efficiency.

N
T-A

FD =

A: The area needed
T: The total execution time
N: The number of operations

*A. M. Dehon, Reconfigurable architectures for general- purpose computing,
Massachusetts Institute of Technology, 1996.

Parameter Selection

14000 Original Implementation
DCS Implementation ---—----
12000 |
10000 |-
8000 o
6000 |
4000 ,- :
2000 | —
0 et ' ' : ' - | ! I !
10° 102 104 108 10° 1910 2

Avg. Time between parameter changes (clock cycles)

Profiling the RTL

The DCS-RTL profiler, in three steps:

1. List parameter candidates and their dynamic
behavior.
(Using a test bench with real-life data)

2. Reduce the number of parameter candidates

3. Calculate the functional density for each
remaining parameter candidate

Execution

Time

3 RTL-DCS Profiler implementations:

1. Exact FD calculation, no parameter pruning

2. Exact FD calculation, with parameter pruning

3. Estimated FD, without running Place and Route

Table I. Run times of all three RTL-DCS Profiler implementations

Orig. Size # after Total run time (h:m:s) Run time
Design (LUTSs) cand. | prun. | Exact FD Exact FD (prun.) Est. FD Impr.
16-tap FIR filter (8-bit) 2099 17 1 0:45:47 0:14:31 0:12:31 3.65x
32-tap FIR filter (8-bit) 4399 33 1 2:38:19 1:04:09 1:02:33 2.54x
16-tap FIR filter (16-bit) 8977 17 17 2:38:35 2:38:35 1:39:39 1.59x
32-tap FIR filter (16-bit) 17312 33 32 10:34:20 10:20:45 7:19:50 1.41x
RC6 encryption 2772 2 1 0:18:25 0:16:26 0:13:47 1.33x
RC6 decryption 3017 2 1 0:19:26 0:17:21 0:14:42 1.32x
Twofish 128 5491 48 14 2:51:58 0:56:41 0:22:19 7.70x
Twofish 192 6891 63 19 4:22:07 1:20:35 0:32:38 7.99x
Twofish 256 8270 78 22 5:56:24 1:40:47 0:44:34 8.03x
Pipelined AES 12958 15 5 2:18:58 0:57:20 0:29:23 5.19x

Test machine: Intel Core i7-3770 3.40GHz CPU with 32 GB of RAM
Target: Virtex-5 FPGA (XC5VFX70T-1FF1136)

Profiling Quality

Would DCS be beneficial?
I N o Y

16-tap FIR (8 bit)

32-tap FIR (8 bit) Yes* Yes* Yes*
16-tap FIR (16 bit) Yes* Yes* Yes*
32-tap FIR (16 bit) Yes* Yes* Yes*
RC6 encry. Yes Yes Yes
RC6 decry. Yes Yes Yes
Twofish 128 No No No
Twofish 192 No No No
Twofish 256 No No No
Pipelined AES No No No

*SRL-reconfiguration is beneficial, HWICAP not

Outline

e How to put this in practice?

m Z
UNIVERSITEIT (Z EXTRA

GENT

The EXTRA Project

» Exploiting eXascale Technology with Reconfigurable
Architectures
* Main objective:

— Develop an open source research platform for continued research
on reconfiguration architecture and tools

* Develop and program HW with run-time reconfiguration as
a design concept

« Enable joint optimization of architecture, tools, applications
and reconfigurable technology

* Prepare the HPC hardware nodes of the future

EXTRA Consortium Proprietary 31

i

Z
UN%TEIT /é EXTRA

GENT

EXTRA project structure

/ WP1: Coordination and management \
/ Applications requirements \ The baSIS Of

and reconfigurable system :
s further work in
WP2: Requirements, |l metrics and demonstration th e p rOJ e Ct
4 ™
[.)evelopment of Open Sou rce
reconfigurable platform for
architectures and tools Iatfo rm for
WP4: Development o WP3: Platform for p
k{ec@-ﬂfigurﬂ ble tools platform. reconfigurable architectures / resea rch ers

Improvements
using the

WPS: Just-in-time WP6: Optimizations of WP7: Future pI atfo rm

\S\mth esis >} applications using reconfig. technology
kreconfig uration j \L improvements j
WPE&: Dissemination and exploitation

EXTRA Consortium Proprietary 32

m Z
UNIVERSITEIT (Z EXTRA

GENT

Open research platform

Hardware platform
requirements

Application specification
and requirements

It i l
EXTRA toolchain
App. analysis and h
transformation Performance

t monitoring
Accelerated app. and
prototype prediction
> N /

Hardware
platform
model

—= T

Supercomputer
— EE8

EXTRA Consortium Proprietary 33

.
JI1TITN
UNIVERSITEIT
GENT

Open

Hardware platform
requirements

7
7 exmma

research platform

App. code J Data

Hardware

T
EXTRA toolch

T
ain ‘]'
App. analysis and
transformation Performance

N

platform

E =

monitoring

model

Accelerated app.
prototype

and
prediction

-

- J

/N

—= T

Supercomputer

EE

3

EXTRA Consortium Proprietary

34

i

UNIVERSITEIT
GENT

Open research platform

7
7 exmma

Hardware platform
requirements

App. code J Data

= 7 +
EXTRA toolchain

l

App. analysis and
transformation

Accelerated app.
prototype

-

]' I Performance

N

monitoring
and
prediction

J

:

/N

UW platfom modey B
J1C
Supercomputer

EXTRA Consortium Proprietary

35

i

UNIVERSITEIT
GENT

Open research

Hardware platform
requirements

platform

i

UW plat om modey

EXTRA toolchain
App. analysis and

transformation

E =

High-level
Performance
model

Accelerated app.

prototype

Scalability
profile

-

Performance
bounds

_

monitoring and

Performance

prediction)

EXTRA Consortium Proprietary

36

Conclusions

e Run-time reconfiguration will be required in future HPC
systems.

e Parameterized run-time reconfiguration allows dynamic
circuit specialization.

e Parameter Pruning and FD estimate greatly reduce time
required for DCS profiling, but still allow correct
identification of DCS opportunities.

e Practical implementations work and are being explored
in open research platform of the EXTRA project.

Last slide

e Much of this work was done in the framework of the EU-
FP7 project FASTER

e Current work (open research platform) is part of the EU-
H2020 project EXTRA (www.extrahpc.eu)

e Questions?

e Tools at https://github.com/UGent-HES/tlut_flow
e More information: http://hes.elis.ugent.be/

