DESIGN AUTOMATION EMBEDDED SYSTEMS

2 NOV C BRABANTHAL

1931 CONGRESCENTRUI
BRABANTHALLE

DEN BOSCH

2 NOV
BRABANTHAL

DEN BOSCH

2 NOV
BRABANTHAL

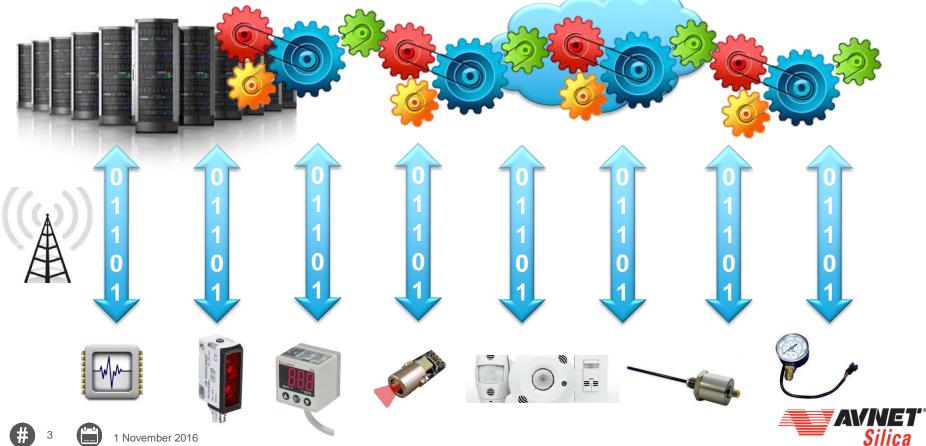
DEN BOSCH

NOV D&E
BANTHALLEN
DEN BOSCH
2016

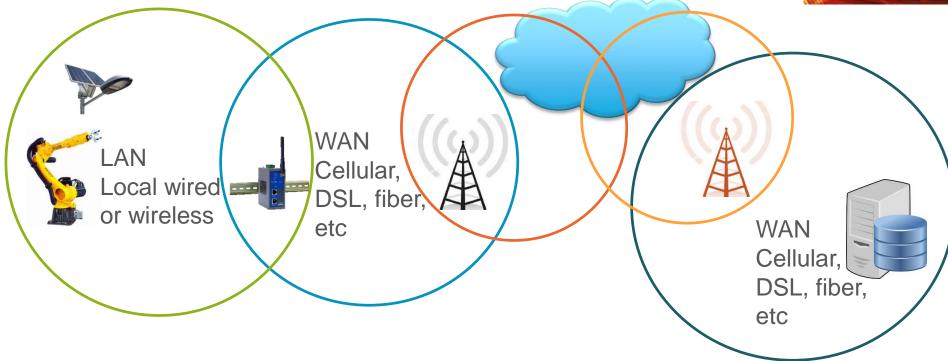
EVENT

PGA - SECURITY - EMBEDDED - INTERNET OF THINGS - PCB TECHNOLOGIEËN - BLUETOOTH LE - ELECTRONIC DESIGN & PRODUCTION

What is network security about?



loT = process loops cross-harvesting data



Typical connection of IoT device – need to trust many!

Weak security

Ok-Good security

Good security

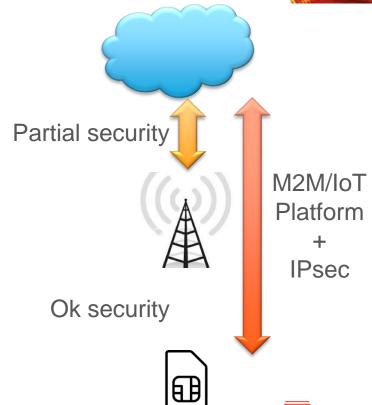
Ok-Good security

Relying on network security only?

2 NOV C D&E
BRABANTHALLEN DEN BOSCH
2016

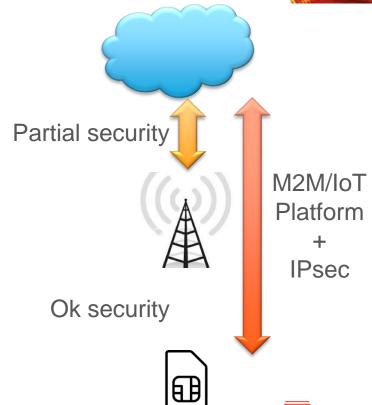
- When 2G was invented, security was designed with the following purposes:
 - Secure user authentication by MNO for proper billing
 - Encrypting communications from phone to phone with level of security equivalent to PSTN
 - Prevent fraudulent usage of the network
- Security optimized for phone to phone communication

Is it what we need in the IoT space?



Security of 2G networks

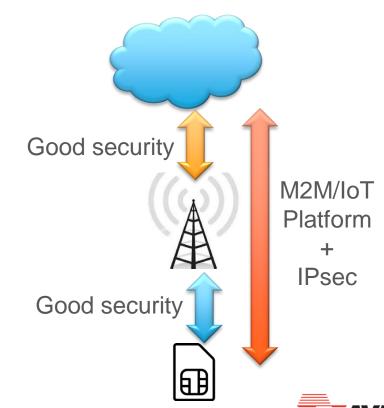
- Authentication
 - 2G device SIM is authenticated to network
 - No authentication of network to device SIM
- Confidentiality
 - Encryption between device and basestation only
 - Data in the clear from BS to network backend
 - 64-bit key with implementation of 54-bit key padded with 10 zeros in practice resulting in very weak ciphering
- Anonymity
 - User IMSI never exposed making it difficult to track a user by eavesdropping the radio network



Security of 2G networks

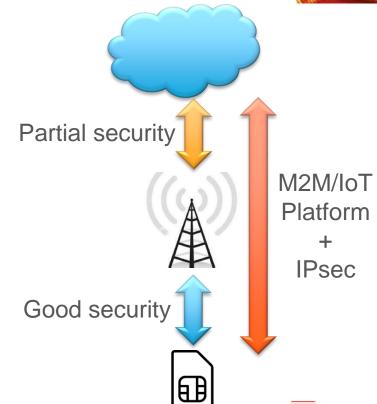
2 NOV — D&E
BRABANTHALLEN
DEN BOSCH
2016

- Authentication
 - 2G device SIM is authenticated to network
 - No authentication of network to device SIM
- Confidentiality
 - Encryption between device and basestation only
 - Data in the clear from BS to network backend
 - 64-bit key with implementation of 54-bit key padded with 10 zeros in practice resulting in very weak ciphering
- Anonymity
 - User IMSI never exposed making it difficult to track a user by eavesdropping the radio network



Security of 3G networks

- Authentication
 - Mutual authentication: the network also authenticates to the 3G device SIM
 - Signaling messages can be authenticated by the 3G device SIM
- Confidentiality
 - Stronger keys of 128-256 bits
 - Full network-to-network security
 - Not to be mistaken with end-to-end security
- Anonymity
 - User IMSI never exposed making it difficult to track a user by eavesdropping the radio network



Security of 4G networks

2 NOV C D&E
BRABANTHALLEN
DEN BOSCH
2016

- First cellular all-IP network
- Authentication
 - Mutual authentication: the network also authenticates to the 4G device SIM
 - Signaling messages can be authenticated by the 4G device SIM
- Confidentiality
 - Encryption between device and basestation only
 - Data may be in the clear from BS to network backend if operator decides so
- Anonymity
 - User IMSI never exposed making it difficult to track a user by eavesdropping the radio network

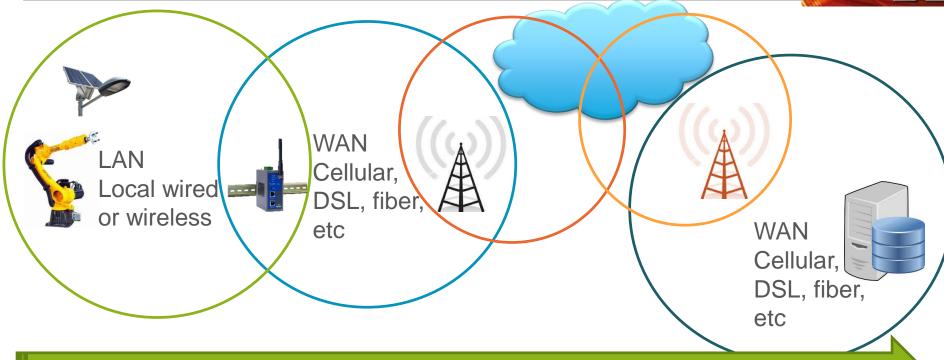
Security of LPWA networks

SIGFOX

- Device authentication to network
 - Unique private 128 bit AES key per device
 - Anti-replay mechanism
 - No key renewal
 - Protecting network access only
- No network authentication to device
- No data encryption

LoRaWAN

- 2 layers of security
 - Device <-> network
 - Device <-> applicative server
- Mutual authentication between device and network
 - Several unique private 128-bit AES keys per device
 - Anti-replay mechanism
 - Weak key renewal
- Applicative private keys for securing data between device and server



How about not having to trust anyone – just in case?

How about an extra layer of device-to-server strong security?

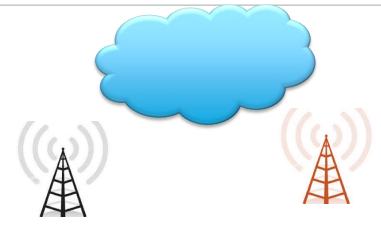
Weak security

Ok-Good security

Good security

Ok-Good security

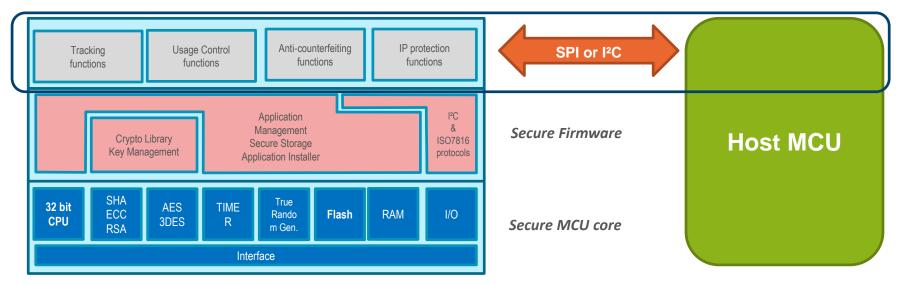
What is really needed...


End-to-end device-to-server security

TLS derivatives constrained to networks

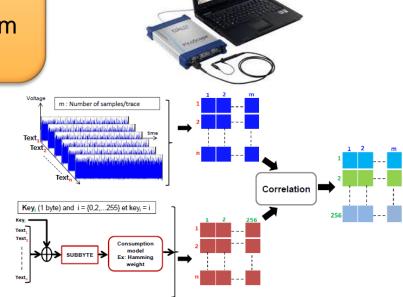
Secure Server

How about an extra layer of device-to-server strong security?



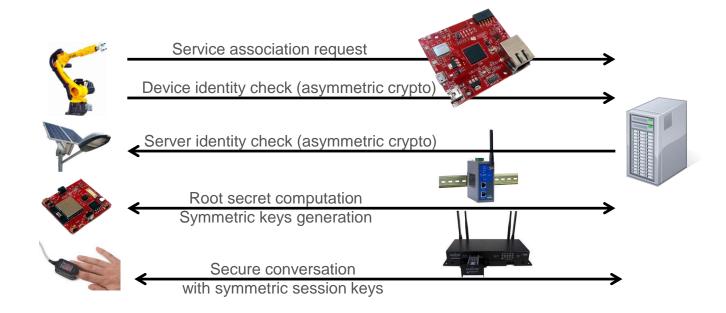
This is what a Secure Elements is

Customized and personalized with unique IDs and keys / certificates for the customer



How secure are standard MCUs?

It takes 16min, a laptop, Matlab, a 150€ USB oscilloscope & probe to extract an AES128 key from any non-secure MCU



Secure connectivity protocol model

Secure connectivity protocol example

Secure Element...What else?

- #1 Intellectual Property protection
- #2 Granting access to a system
- #3 Logistics assistance for managing unique
 - devices
- #4 Secure communications

#1 – Intellectual Property protection

Problem

- Preserve IP from copying and counterfeiting
 - Useful when outsourcing manufacturing, especially offshore
- This IP can be HW and/or SW

- A small secure element attached to each board to protect
 - Personalized with a unique ID and corresponding secret keys / certificate
 - That cannot be copied
 - Acting as a passport
 - Validated by a local MCU or a distant server

#2 – Granting access to a system

Problems

- How to add an authorized device to a remote system (provisioning)?
 - Famous: Ink cartridge printer
 - Motherboard daughterboard: sensitive/expensive spare parts
 - Home/building automation accessory inside a local network
 - Smart meter inside a global grid
 - iPhone's accessories
- Prevent device or service spoofing

This accessory may not be supported.

OK

- A small secure element attached to each device to protect
 - Personalized with a unique ID and corresponding secret keys / certificate
 - That cannot be copied
 - Acting as a passport
- A mechanism such that this passport can be read from a local gateway or distant server in a secure way

#3 – Logistics assistance for managing unique devices

Problem

- Logistics assistance in local / global network / system provisioning involving some personalization for every single device
 - Minimizing in-the-field configuration
 - Securing whole supply-chain at minimum cost
 - Secure remote management throughout product life (up to 15 years)
 - Distribute and renew secret keys in a safe and simple way

- Our secure programming line with Avnet Logistic Services
 - Capable to personalize secure elements Handling volumes from 1k to 10M+
 - HSM: Hardware Security Module capable of generating secret keys
 - Compliant with EMVco standard (Europay – Visa – Mastercard) = highest level of security in the industry
- Key management with Trusted Third Party throughout product life

#4 - Secure communications

Problem

- Protect data exchanges from potential eavesdroppers
- Secure systems against hackers from sensor to server

- A secure element capable of:
 - Strong authentication
 - Root key storage
 - Session key generation and storage
 - Encryption / decryption

Secure Elements Solutions by Avnet Silica

Many chips boast security features

Cortex M0/3/4 PIC, etc

	Crypto accelerators	High thruput crypto acc	Hardened certified HW	Personalized	Safe for keeping keys
Basic MCUs	✓	X	X	X	X
Crypto co-proc	✓	✓	X	X	~
Secure Elements	1	X	✓	✓	✓

NXP Kinetis MAXIM Deepcover secure MCUs MARVELL, etc

2 sorts of Secure Elements

TPM

- TPM = Trusted Platform Module
- Standardized security controller
- Standard from TCG (Trusted Computer Group)
- Used in every computer, main board, complex routers, etc
- TPM 1.2 getting obsolete (SHA1 and RSA)
- TPM 2.0 with new crypto such as ECC
- → Security companion chip for MPUs (Marvell, NXP, etc)

"Universal"

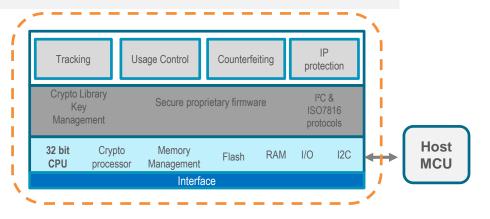
- Able to perform and associate many crypto primitives for security schemes outside the TCG standard
- From basic authentication of a device to another (printer cartridge to printer)
- To TLS session enablement
- Asymmetric and symmetric cryptography
 - Digital signatures
 - Diffie-Hellmann
 - AES, DES, SHA2/3/256
 - RSA, ECC (NIST, Brainpool)
- Some are even FW customizable!

HW Security: Which markets?

Silica

Trusted Objects solution

TO 136 is a fully integrated solution:


- > 32 bit Secure CPU hardware, compliant with EMV Co standard
- Customizable on-demand software, optimized for the IoT
- > Host code to interface with secure hardware through I2C
- Product personalization with AVS-exclusive secure logistics

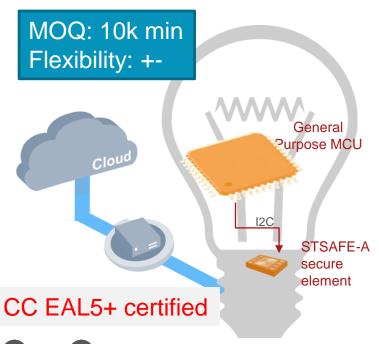
Volumes: <1k-100M!

Flexibility: ++

DFN6 package

HW EMVco and CC EAL4+ certified

- Authenticate Device and/or Server
- Secure communication
- Session key establishment
- Broadcast key management
- Secure data storage
- Setup a TLS connection
- Implement USB Type C authentication



STM STSAFE-A – STSAFE-J (Java) & TPM

Easy to use security services for IoT developers

Authentication

Secure communication

Secure storage

Secure Firmware upgrade

USB Type-C

INFINEON OPTIGA™- Hardware-based security solutions

	OPTIGA™ Trust	OPTIGA™ Trust E	OPTIGA™ Trust P	OPTIGA™ TPM
Security Level	+	+++ entication only	CC certified	CC certified
Design in complexity	low	low	medium	medium
Feature set	One function	Enhanced	Programmable	TPM standard
Personalization (loading of keys and certificates)	\checkmark	\checkmark	\checkmark	\checkmark
MOQ	12k	12k	30k	3k/5k
Certification	No	HW EAL5+	EAL5+	EAL4+

NXP Turnkey Solution A70CM

Key Features

- Built on A700x NXP Security IC featuring state-of-the art Tamper Resistance technology
- Configurable Public Key cryptography with keys up to 2048 bits (RSA) and 256 bits (ECC)
- Signature generation and verification
- RSA encryption/decryption
- AES 128/256 bits encryption/decryption, large key store
- Factory Key pre-injection in certified (Common Criteria) secure environment
- On chip key generation
- Secure key management
- Device Life Cycle Management
- 100 Kbits/sec slave I²C interface
- -25 °C to +85 °C (A7001CMHN1), -40 °C to +90 °C (A7002CMHN1) operational ambient temperature
- HVQFN32 package

CC EAL5+ certified

Volumes: 50k min

MAXIM DEEPCOVER Security ICs

Analog Micros

Integrated Analog and Security Support for private and public key cryptography

e.g. **MAX71637**

Volumes: 50k min

Not certified

DeepCover Secure Microcontrollers

Generic cryptographic support enabling trusted boot and trusted communications

- MAXQ1050
- **Future micros**

DeepCover Authentication **ICs**

Enables hardware authentication as well as simple Public Key Infrastructure

DS28XXXX, MAX66300

And what is enough security?

- It is a complex process
 - Using AES is the right thing to do
 - How to personalize each device, with IDs?
 - How to generate unique AES keys manufacturing process
 - Your self?
 - The EMS? Can you trust them?
 - Your customer or final user?
 - How much time / money does it cost?
 - How often to renew keys?
 - How to renew keys?

Conclusion

There is not one solution for your problem.

Make use of experts.

Thank You!

Avnet Silica Wim van der Steeg 076 - 5722352

wim.vandersteeg@avnet.eu

