DESIGN AUTOMATION EMBEDDED SYSTEMS

2 NOV —
1931 CONGRESCENTRUM
BRABANTHALLEN
DEN BOSCH

FPGA - SECURITY - EMBEDDED - INTERNET OF THINGS - PCB TECHNOLOGIEEN - BLUETOOTH LE - ELECTRONIC DESIGN & PRODUCTION

Excellent design for production

Optimize your design for production

Altium BV

Allum

Goorseweg 5 7475 BB Markelo +31(0)547-334045 www.altium.com

Design For Excellence - DFx

- DFA (Assembly)
- DFM (Manufacturing)
- DFT (Test)
- DFC (Cost)
- DF....

Quote

To be successful in today's increasingly time-sensitive and competitive markets, businesses need manufacturing processes that are fast, flexible, and adapt quickly to change.

Achieving this objective requires integrated solutions that **connect supply chains to factory processes**, **production equipment**, **and factory systems in a seamless**, **customer-centric network**.

SAP Manufacturing Strategy- An Adaptive Perspective

Design / Production Domains

- Designer world different than Producer world
 - Expectation level of designer does not always fit to available skills of producer
 - Designers know their design. Producers know their production processes
 - Producer cannot take responsibility for the design intent!!!
- Improvements
 - Early involvement of the producer (As early as possible)
 - Making right choices for PCB technology
 - Awareness of design aspects from the producer
 - Awareness of production aspects from the designer
 - Awareness of testing aspects from the designer

Design / Production

Breaking the barrier...

PCB Design and Production process

Life Cycle Cost

Figure 1: Leveraged Effect of Design Phase on Life Cycle Costs Source: Military Electronics/Countermeasures, August 1990.

Schematic Entry

- Functional decomposition (Block Diagram)
- Hierarchical Design
- Multi-Sheet
- Multi-Channel
- PCB Design Rules
- Variants
 - Alternative
 - (Un)Placed

Engineering Rule Checks - ERC

- Schematic diagrams can be checked:
 - Connectivity
 - Buses
 - Harnesses
 - Wires
 - Global power connections
 - Document
 - Net/Bus naming
 - Hierarchy
 - Component naming

Design For Test - DFT

- Accesability
 - Even before PCB Layout has started
- Test points
- Boundary Scan
 - Netlist
 - BS-Extensions

Design For Cost - DFC

- Live Supplier Links
- Real time pricing using Active BOM
- Experiment with Quantity
 - Price
 - Availability
- 2 Views
 - BOM Components
 - BOM Catalog

Design Transfer to PCB

- Engineering Change Order
 - Differences between Schematic and PCB
 - Nets
 - Components
 - Multi-channel
 - Variant
 - Availability of footprints
 - Supplier libraries
 - Customer libraries
 - Footprint checks

PCB Design

- After Forward Annotation:
 - Netlist synchronization in PCB Editor
 - Design Rule creation
 - Component Placement
 - Floor planning
 - 2D/3D
 - Copper planes
 - Routing
 - Analog
 - RF
 - Digital
 - High-speed

Design Rule Check - DRC

Electrical

- Trace and plane clearance
- Short Circuits
- Open Connections

Routing

- Trace widths
- Permitted layers
- Via sizes
- Differential Pairs
- Length Tuning

Placement

- Height
- Component clearance

Design Rule Check (cont.)

Manufacturing

- Bare Board
 - Solder mask
 - Annular ring
 - Hole size
- Assembly
 - Solder paste
 - Silkscreen
- Test
 - Test points

Design Analysis

- Typically, most solutions will have you rely on a post process/design afterthought, which requires a physical prototype to verify.
- During design: Ability for upfront analysis
 - Simulation A/D
 - Signal Integrity
 - Power Distribution
 - Mechanical integration
 -

Design Analysis

Technical Product Documentation

Production data

- Design data -> Production data
 - Production data is just a subset of design data
 - Gerber, NC-drill, netlist, ...
 - Bill of Materials:
 - Excel, Text, CSV, PDF, ...
 - Formatted by the designer
 - Not always complete or not always clear enough (e.g. missing MPN)
 - Preliminary BOM
 - Variants
 - Improvements:
 - Use templates from Producer
 - Use ODB++ (or IPC-2581)
 - Always deliver MPN
 - Indicator for alternative components
 - Revision control (PDM/PLM) is more than sending a 'versioned' .zip file
 - 3D visualization or even 3D printed mockup

BOM.txt - Kladblok

Bestand Bewerken Opmaak Beeld Help

Bill of Materials Template

- Use BOM template from producer
 - Can be used during output generation
 - Streamlines dataflow
 - Prevents incomplete BOM
 - Less work for producer
 - Lower the labor costs
 - More competitive
 - Prevents errors
 - Communicate with supplier about the preferred format
 - Need for structured libraries

Transfer DSW

Barry Berends Goorseweg 5 7475 BB Markelo +31(0)547-334045 www.transferdsw.nl

DFM/DFA - Vayo

- CAD DRC
- CAM DFM/DFA
- Component Libraries

Difference	DRC in EDA	DRC+	DFM Expert (Comprehensive DFM analysis)
1. Total check rules	appr. 100	appr. 1000	appr. 1200
a. fabrication	50~80	300	300
b. assembly	<10	700	900
c. test points	<10	30	30
2. Customization		value added service	value added service
3.1 Component entity library			YES
3.2 Component checking rules			+ >100 rules
4. BOM import, comparison, export			YES
5. 3D assembly boards, and export			YES
6. Support Gerber data source			YES
7. Job comparison, layer comparison			YES

DRC+

 Validate placement process Validate reflow/wave process Validate rework process ...

DRC+ check: Assembly

DRC+ check: Test Point

- TP to TP distance TP to parts distance
- •TP to pad distance

Reports output

Color warning level Interactive with PCB layout

Rule managemen

Interactive result query

- Configurable parameters
- •User access level
- Customization service

DRC+ check: Fabrication

- Validate SignalValidate Drill
- Validate Solder mask/Silkscreen ...

•Support mainstream EDA systems

Vayo DRC+

Advanced DRC check

Examples of PCB Fabrication Defects

Shorts Risk: PCBA malfunction

Safe distance check

(Check distance among trace, pad & hole)

Risk: shorts, difficult to repair

Annular ring, Gasket analysis

Risk: Difficult to solder or poor solder joint quality

Thermal pad check

(Thermal connection & thermal spoke width)

Risk: Fast heat distribution cause cold soldering

Pad issue (Missing, via on pad)
Risk: Assembly problem, insufficient solder

Solder mask check Risk: Sold problem

Trace output from long edge Risk: Standardize design

DFM Expert

- Comprehensive librar
 Ouick manual create
- Detailed parts info.

Practical Rules

PCB Fabrication Check

- Validate Signal
 Validate Drill
 Validate Solder
- Validate Soldermask/Silkscreen

PCB Assembly Check

Validate footprint/pad
 Validate spacing/distance
 Validate soldering ...

Result Query & reports

Interactive check
 Easy to share
 Powerful/Configurable

BOM Analysis

- •Internal validation
- BOM&CAD Validation
 Support alternative part

CAD/Gerber Source

DFM Expert

Design for Manufacturing Analysis

Comprehensive, Automatic, Easy

Examples of Assembly Defects

Fiducial mark check
Risk: identification problem

Package Vs. pad validation Risk: Placement error, poor soldering

Component safe distance check Risk: Poor Soldering, difficult to rework

Pin .Vs. pad Analysis
Risk: Poor soldering

Low SMD comp. between high SMD comp. analysis Risk: Component damage, difficult to rework

distance check
Risk: problem for manual insert process or poor reliability

Q & A

Any questions?

