Tektronix

Wirelessly Wonderful

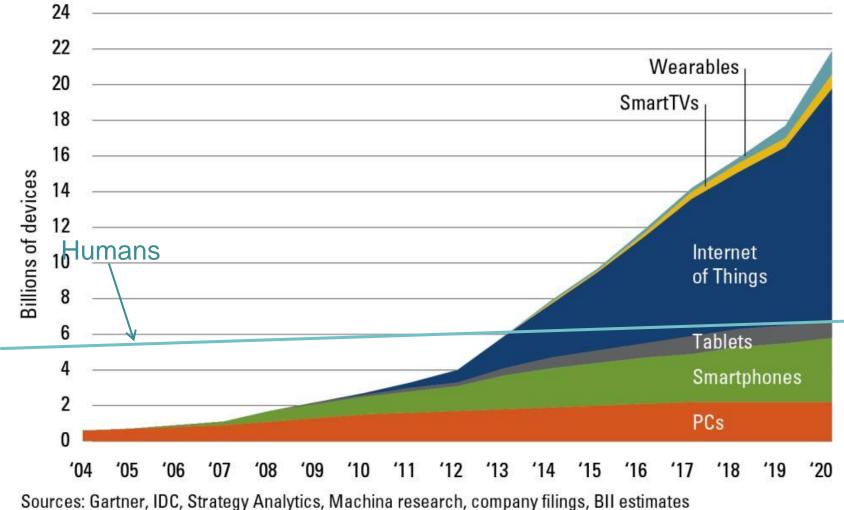
Solutions for IoT test challenges

D & E Event – 2nd Nov 2016

Derek MacLachlan – Tektronix, in partnership with CN Rood

Email - derek.maclachlan@Tektronix.com

Agenda


- The IoT (M2M*) applications, and technologies
- Major IoT Design and test challenges
 - 1. IoT product design leveraging the many IoT system modules
 - 2. Debug complex digital/analog/RF system problems
 - 3. Maximizing your device's battery life
 - 4. Speeding your device through EMC compliance
 - 5. Speeding your device through Wireless certification
 - 6. Preparing for IoT network deployment

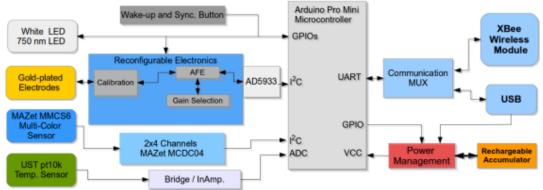
(*) IoT : Internet of Things, M2M: Machine to Machine

Connected Devices

11/3/2016

3

2016

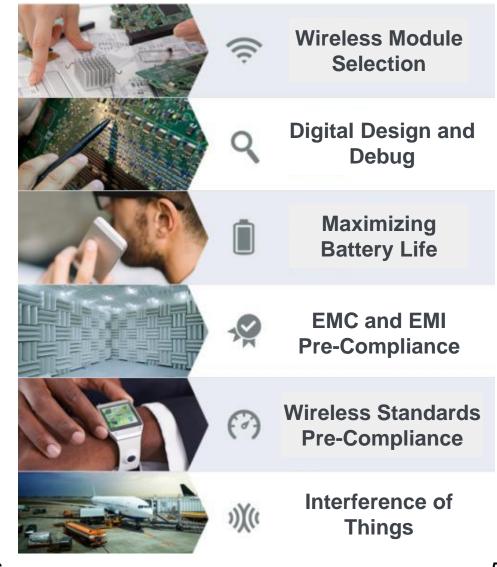

IoT – Integration of Technology Some of the drivers

↓<u>Cost</u>

Key IoT Semiconductor Components: ASP Projections

Semiconductor ASPs	2012	2016	Annual Price Decline
Microcontroller	\$0.49	\$0.30	-12%
Wi-Fi	\$1.30	\$0.80	-11%
Bluetooth	\$0.75	\$0.35	-17%
MEMS Sensor	\$1.30	\$0.95	-8%
Camera (1.8 MP CMOS Sensor)	\$1.70	\$1.10	-10%
GPS	\$1.15	\$0.65	

*↑*Modularity



Source: Gartner, ARM Holdings, and Raymond James

11/3/2016

Six Key IoT Design Challenges

11/3/2016

IoT Design and Test Challenge #1

 IoT product design – leveraging the many IoT system modules

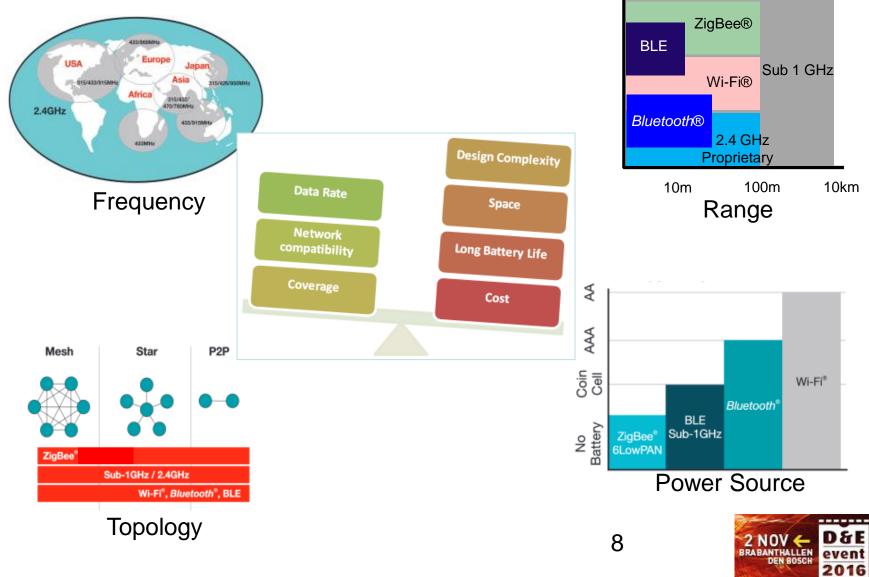
IoT device design value chain

Chipset

Embedded Module

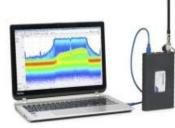
Boxed Product

Source: Roku, Inc.


Integrated Circuits Several ICs (analog, RF, digital) packaged in a module MCU, Wireless module Crystal, antenna, voltage regulators, balun, shielding, Passives, etc.

Final Product

11/3/2016


Choosing IoT connectivity technology

Design your IoT device with higher confidence under true-life signal conditions

1

Record Signal environment with Real Time Spectrum Analyzer

Time Spectrum Analyzer

2

Play back recorded signal during IoT device design

Stimulus

10

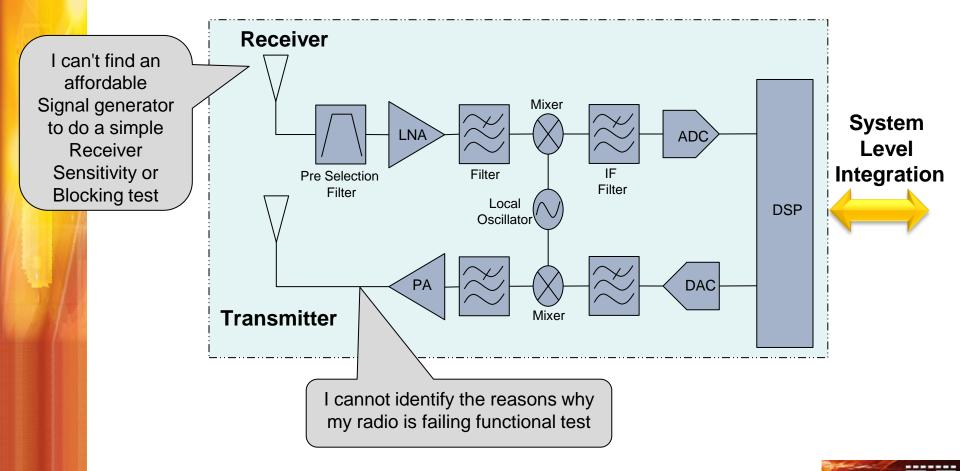
Signal Generator

в

DUT

IoT Design and Test Challenge #2

 Debug complex digital/analog/RF system problems

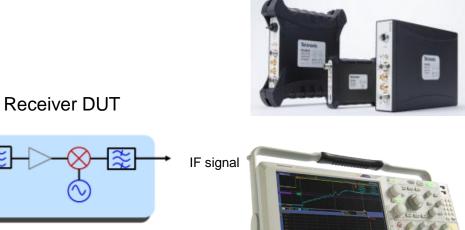

Typical IoT embedded module block diagram and common issues

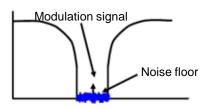
RABANTHALLEN

event 2016

Need RF receiver troubleshooting test solution?

2 NOV -

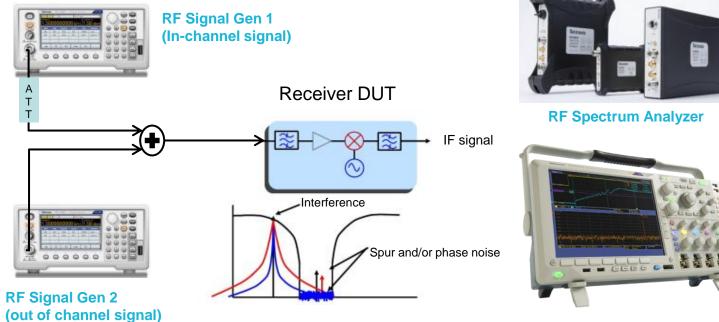

2016


Example application – RF receiver sensitivity test

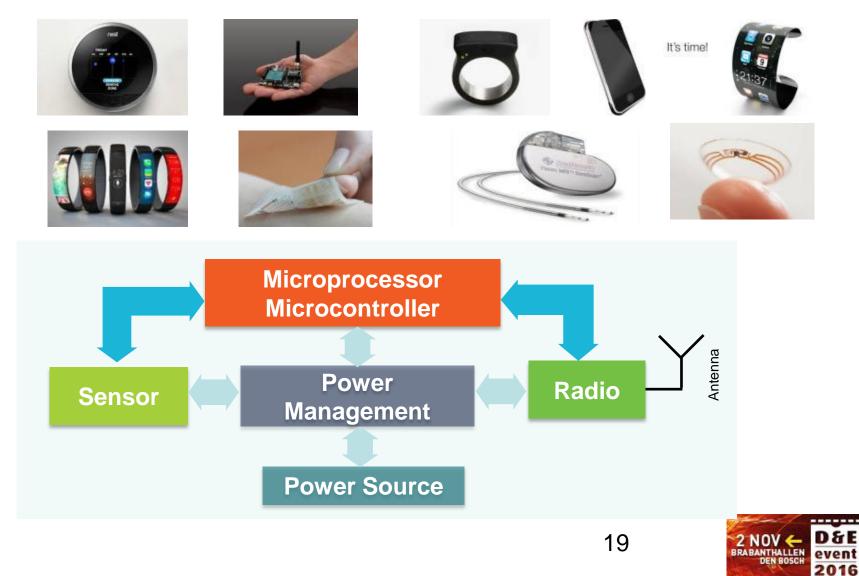
RF Signal Generator

ATT

RF Spectrum Analyzer



Example application – RF receiver blocking test

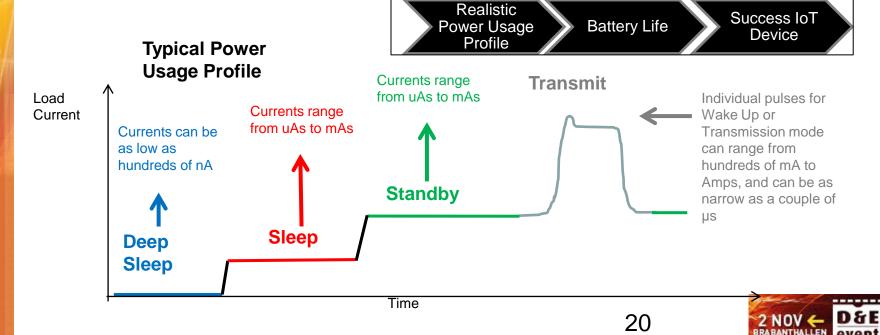

17

IoT Design and Test Challenge #3

Maximizing your device's battery life

Architecture IoT Wireless, Portable Device

IoT device power consumption analysis


Power Consumption Analysis

•

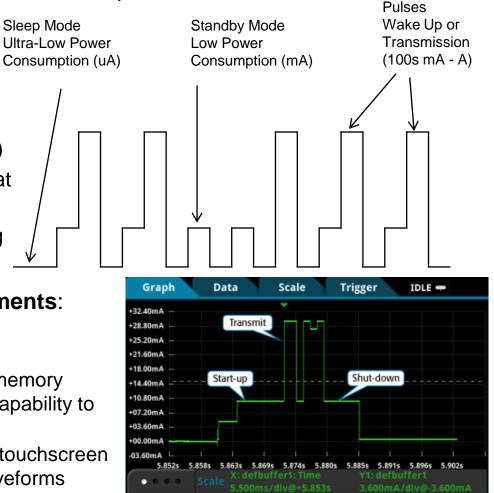
- Critical for IoT Device Design
- Directly translated into the success of any IoT product
- Characterizing an IoT device power profile is not a trivial design activity

- Assessing Battery Performance:
- How do I measure the very low battery currents when the device is in sleep or standby mode?
- How do I measure the battery current during the transmission bursts?
- How do I characterize total battery power consumption?
- How does battery current change as the battery discharges?

2016

IoT power consumption analysis

Challenges and Requirements


Sleep Mode

Testing Challenge

- Accurately measuring a wide range of currents from tens of nA (deep sleep mode) to hundreds of mA (active mode)
- Capturing transient signals that lasts only us
- Monitoring and saving for long period of time

Typical power testing requirements:

- **High Accuracy** for high quality characterization in wide ranges
- High Sample-Rate with deep memory buffer and advance triggering capability to capture waveforms over time
- Ease of Use: Pinch-and-zoom touchscreen interface to quickly analyze waveforms
- High Precision Supply: Supply clean, _ stable, accurate DC power (supports high accuracy measurement)

Individual

IoT Design and Test Challenge #4

 Speeding your device through EMC compliance

EMI/EMC Definitions

- EMI/EMC
- Regulations
 - Country/Region
 - Industrial/Consumer
 - Military
- Conducted Emissions
 - Unwanted signals coupled to AC mains
- Radiated Emissions
 - Unwanted signals broadcast from DUT
- Intentional Radiator
 - Spectrum Emission Mask
 - Power Limits
 - Harmonic Content
- Susceptibility/Immunity
 - Region dependent

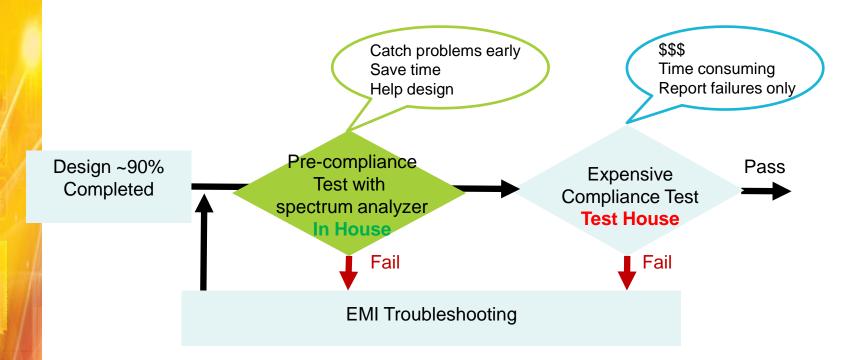



Figure 1. This EMI test report shows a failure at around 90 MHz.

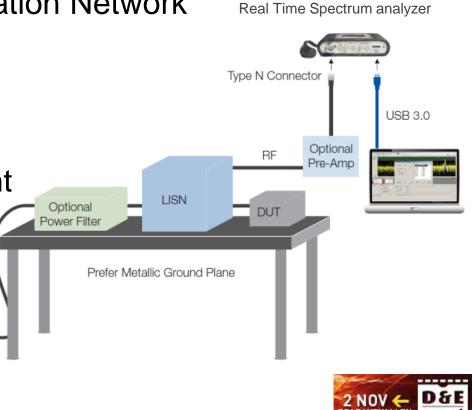
EMI Testing Work Flow

EMI Pre-Compliance testing will save time/money by identifying problem areas before they become expensive re-design issues

Do I Need An EMI Receiver ?

- EMI receiver are designed specifically for spectrum sweeping
 - RBW
 - Shape
 - Bandwidth
 - Detectors
 - Peak
 - Average
 - Quasi-Peak

Frequency Range	Bandwidth (6 dB)	Reference BW
9 kHz to 150 kHz (Band A)	100 Hz to 300 Hz	200 Hz
0.15 MHz to 30 MHz (Band B)	8 kHz to 10 kHz	9 kHz
30 MHz to 1000 MHz (Bands C and D)	100 kHz to 500 kHz	120 kHz
1 GHz to 18 GHz (Band E)	300 kHz to 2 MHz	1 MHz


Table 1. Measurement Bandwidth versus Frequency specified by CISPR 16-1-1.

- Pre-selected RF tuning stages
- User defined dwell time per step
- Detailed requirements in CISPR 16-1-1
- For Pre-Compliance You Don't Have To Use A Special Receiver
 - We are making an accurate approximation
 - Understand the compromises in the measurements

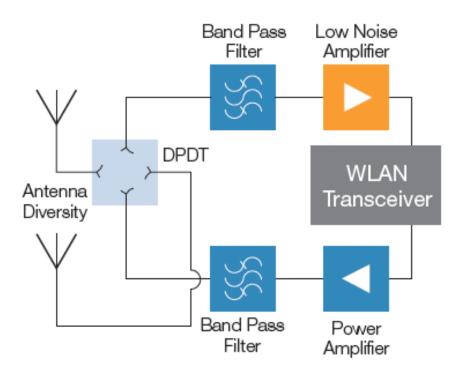
Setting Up A Pre-Compliance Test

CONDUCTED EMISSIONS <30 MHZ

- Utilize a metallic surface which can be grounded
- Line Impedance Stabilization Network (LISN)
- Pre-amp (Optional)
- Limiter (Optional)
- Make sure the instrument can accommodate gain/loss corrections

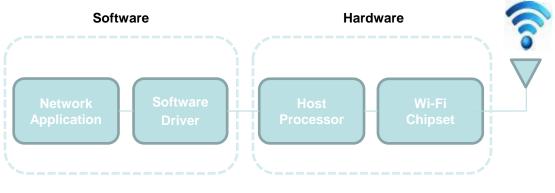
Setting Up A Pre-Compliance Test RADIATED EMISSIONS > 30 MHZ

- Identify an area with natural RF shielding
 - Basements
 - Parking garages
- Watch out for DAS
 - Used to help cellular coverage


- Non metallic platform for DUT
- We need to look at 360 around DUT
- Tripod/pre-amp optional but recommended Real Time Spectrum Analyzer

Intentional Radiator Testing

- For devices that transmit RF energy
 - WiFi, Bluetooth,
 Zigbee
- In-Band Channel Power
 - Integrated channel power
 - Defined by standards body
- Out of Band Channel Power
 - Power outside channel BW
 - Commonly defined with a mask
- Specific hardware & software requirements


IoT Design and Test Challenge #5

Speeding your device through wireless certification

Wireless standards certification

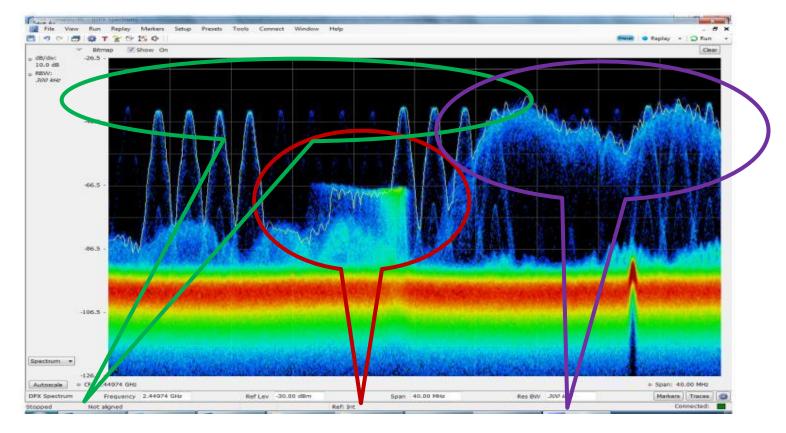
- Wireless standard certification is what allows to print a wireless standard's certified logo on a product ...
- Many RF modules available that are "pre-certified". But a precertified RF module doesn't guarantee a certified boxed product
- Even small deviations from reference designs can cause failures
- Changes to the RF path can put you at risk
- How your software interacts with the module may affect compliance.

Typical Wi-Fi Enabled Device

Wireless transceiver precertification in SignalVu-PC

A File View Markers Setup Presets Tools Connect Window Help

🍽 Replay 👻 💭 Run 👻 Show Vectors Freq Error: 3,192 kHz, Aub Trane1 250 kHz Position 0.000 Hz WLAN pre-certification Test 358 kHz Earliert He Autoscale + Position: 0.5xmbol + Scale: 2.5 Avg Dev (1) .207.072349; All: 203.073349; **Payload Reade** (IEEE 802.11 a/b/g/n/ac) Trace 1 Show +Peak Normal Clear 15.0 cy Offset and Drift 110 packet-average 500 kHz 15.0 dB Packet ROW: 45.0 71.86 Hz Ass FrecOffse 200 MA ort Like -187.0 Hz VBW: A File View Markers Setup Presets Tools Connect Window Help * 0.000 H 45.0 Max Drift fn-f4 -266.1 Hz Out of 34 Max Drift fe-Co-s -71.86 Hz 侈▤솟∿▤✿巢ѷѿᇰ▣ 🕨 Replay 👻 75.0 Datast Power [10 pari Autoscale a Post a Scale: -79,59 dBr Time: 0.0 ACT NOT DOMESTIC 462.0 W -38.00 dBm Analysis 205.2 kH -266.1 H AF2 ave Max Diff fr-6/ **Burst Po** -12.14 dam Peak-to-Average 10.01 dg L-SIG Data -20.4 AF2avg/8F1avg: Max Drittle-fie-s -71.86 H Autoscale e CF 2,4400 e Span 10.00 MH offset: 10 Origin Offset: -69.80 dB **Burst Index:** 1 Rate 64.000 us Frequency Error: -643.254 Hz Common Pilot Error: 0.280 % Length RT Summary Frequency 2.44000 GHz Ref Lev 15.00 dBm Markers Traces 40.0 Length: Symbol Clk Errort +0.126 ppr Tail Acq BW: 25.60 MHz, Acq Length: 1.387 # 890.000 us 60.0 VHT-SIG A dB/dv: Pilots Data 8W 30.0 **Bluetooth pre-certification Test** 10.0 dB STBC -39.28 d8 RMS -39.31 dB -40.33 d8 -26.75 dB -30.18 dB Nists Peak -26.75.48 100.0 TROPPSN 63 / 393 (Low Energy, Basic Rate, Autoscale Position: 0.000 r Scale: 1.006 ms Trace 1 Show +Peak Norra Cent and Enhanced Data Rate) dB/dv 0.0 10.0 dB RBW: -20.0 100 kHz VBWC -40.0 -60.0 80 100.0 a CF 5,2500 GHz + Span 208.0 MHz Autoscale WLAN Summ Frequency 5.2500 GHz Ref Lev 0.00 dBm Markers Traces 🖸 Acq BW: 250.00 MHz Acq Length: 1,006 ms Stopped


Telchronix

IoT Design and Test Challenge #6

Preparing for IoT network deployment

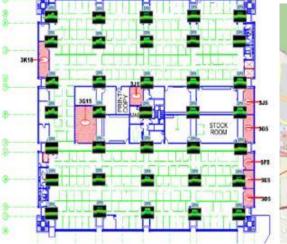
Your IoT device is not alone out there ...

Bluetooth signal

Microwave oven

Wi-Fi signal

Deployment of long range low data rate IoT networks



Long range low data rate IoT network operators require outdoor mapping of measurements in order to validate operation frequency bands

Use SignalVu-PC mapping Option to

Hunt indoor interference Locate transmitters

test signal quality/coverage

