

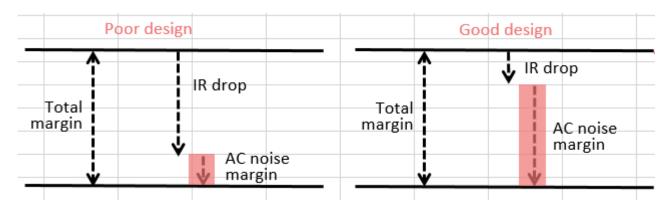
Power Delivery Network Analysis

Erik Nijeboer / Bram Bruekers

Oktober 2017

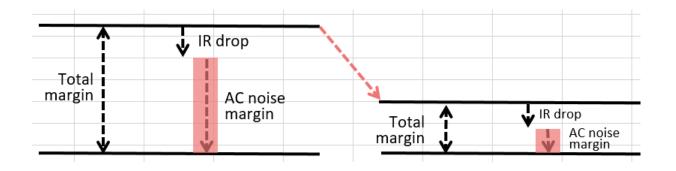
cādence°

Agenda


- Why Power Delivery Network Analysis?
- Analysis types,
 - DC simulation
 - Thermal aware simulation
 - AC simulation
- PDN analysis at Prodrive Technologies
- Tools and integration

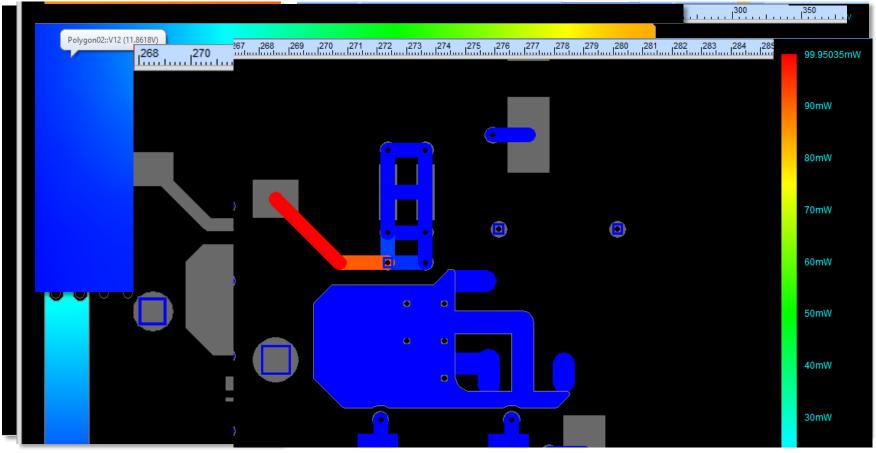
Why Is Power Distribution Analysis ?

- DC voltage is the most fundamental criterion for the operation of the circuitry in the system
 - The voltage supply is allowed to deviate by an amount specified by the vendor
 - This deviation (or fluctuation) of the supply is composed of DC loss and AC noise
 - The total voltage tolerance is commonly 5% (or less) of the nominal operating voltage
 - If the tolerance is constant, then a reduction in DC loss yields a larger AC noise budget



cādence°

Why Power Analysis Is Important?


- Numerous factors have combined to exacerbate the problem
 - Core voltage levels continue to drop: 1.2V and less are now common. Total margin drops from 250mv to 60mv
 - As voltage is reduced, current requirements typically increase:
 IR drop = I * R
 - Miniaturization of electronics results in fewer layers and higher densities thus reducing the available area for power net

DC analysis

- With IR drop analysis you see
 - Voltage levels across the board
 - Current density

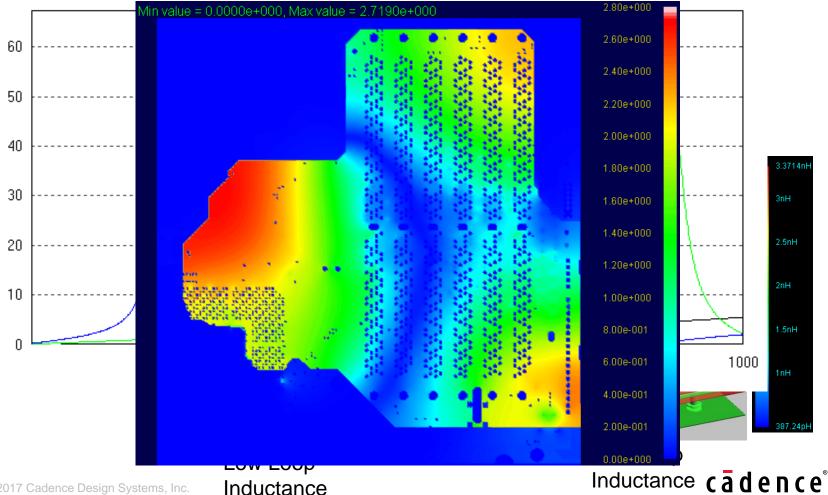
What about Thermal effects ?

- Heating due to current changes resistance of copper
- Without Thermal effect IR drop estimates will be inaccurate.
- High temperature due to localized current density can cause smoke or fire hazard
- Cadence DC analysis includes effects of
 - Component heating (power dissipation), including heatsinks
 - Joule heating (PCB copper)

	Pure Heat Transfer Simulation (component heating only)	Electrical / Thermal Co-Simulation (component & Joule heating)	Effect of Joule Heating	
Max Component Temperature	79 °C	85 °C	+6 °C	
Max Board Temperature	72 °C	82 °C	+ 10 °C	

Why AC power analysis?

- Switching circuit requires current to charge the load.
 VRM needs to supply this power
- VRM is unable to respond if output impedance exceeds target impedance.
 - Introduces switching noise: $Z_t = \frac{Vdd * ripple}{Tot(*)}$


- Impedance should be smaller than Z_t at broad frequency range to lower switching noise.
- AC analysis calculates PDN impedance

cādence°

How to lower impedance?

- Add decoupling capacitors, bulk/ceramic capacitors
- -oop inductance reduction, effect at higher frequencies

Design Decisions depending on PDN Analysis

- To determine proper metal thickness for power/gnd planes
- To find out
 - If and where to add additional via or power/gnd shape to ease the overheat
 - Whether to add additional plane layers needed in the board stackup
 - Power dissipation and temperature profiles in PKG/PCB
 - If and where to add sense line compensation for VRM
- Decoupling capacitors
 - Quantity, type and location

Prodrive Technologies

Bram Bruekers

Since 2003 working at Prodrive Technologies Analogue / Mixed signal hardware design PCB design

- 15+ years experience
- High current & voltage
- Low noise

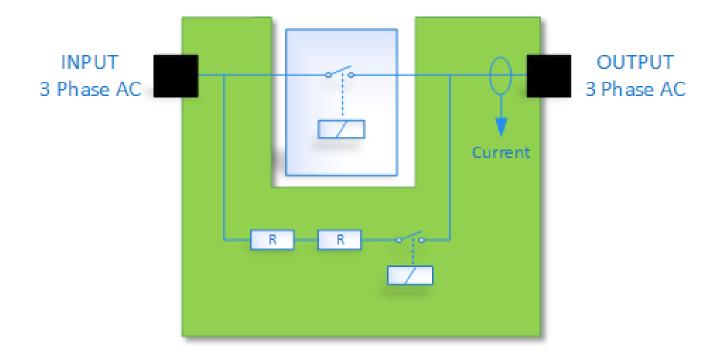
PCB tooling support & maintenance

Prodrive Technologies

- One of the fastest growing privately owned technology companies in Europe
- HQ located in Son, Netherlands
- International located: Germany, USA, Israel, China
- Design of electronics, software and mechanics
- Manufacturing
- Core competences
 - High end computing
 - Power conversion
 - Motion & mechatronics
 - Industrial automation
 - Vision & sensing
 - IoT

- Industries of main interest:
 - Industrial
 - Automotive
 - Infra & energy
 - Medical

MRI Gradient Amplifier


- 3-axes gradient amplifier cabinet
- 2100V / ±1200A Patented end stage
- Maximum 45kW continuous output power for three axes
- Integrated high precision current sensors
- High reliability of >30,000 hours
- Lifetime: >10 years
- Multiple FRUs (Field Replaceable Units)

Mains Input Board

- Inrush current limiter
- Power distribution
- Integrated current measurements
- Designed for 3x 130A continuous

cadence

Design Choices

• What type of interconnection to use?

	Pro	Con
Cable	Easy / flexible routing	Assembly issues, many connections Where to place electronic circuits?
Bus-bar	current carrying capability	Difficult to 'route' through complex product Where to place electronic circuits?
PCB	Electronic circuits possible Ease of assembly	Complex design Heating

Design Choices

PCB

- Design complexity
 - How many layers ?
 - Copper weight ?
 - Total Thickness -> Limited by components !
- Thick copper
 - Lower temperature ?
 - Not necessarily !
 - -Higher costs + leadtime PCB FAB house
 - PCB Assembly issues

So, thicker is not always better

Simulation to make design choices

- PCB heating most critical factor for this circuit
 - Absolute voltage drop not interesting
- Initial stackup : 6 layers 4oz (~140µm) copper
 - Creating hotspots due to stackup, routing and plane cuts.
 - Long leadtime for raw material
 - UL certification for 140µm+ copper in several PCB FABs not available
- Final stackup : 12x 2oz (~70µm) copper
 - Hotspots are more spread because of overlapping planes
 - 'Standard' available materials = short lead time !

Comparison 2 PCB stack-ups



	Initial	Final design
# Layers	6	12
Copper weight	4oz	2oz
Material availability	-	+++
PCB costs	€€€€€	€€€
# PCB Fabs	-	+++

Simulated vs. Measured

ΔT simulated ~19°C

 ΔT measured ~16°C

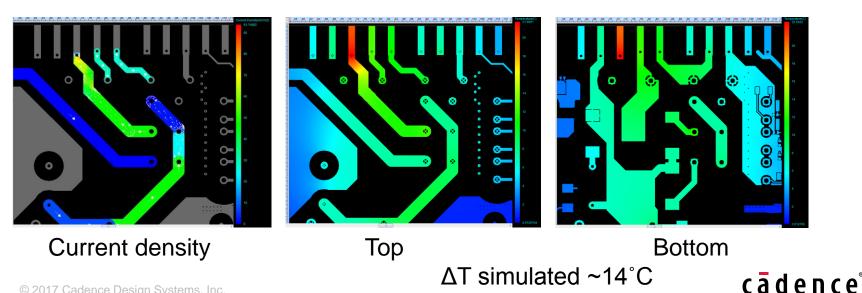
Total current of 390A No airflow

cādence°

Other practical applications

- Feasibility check
- Debugging

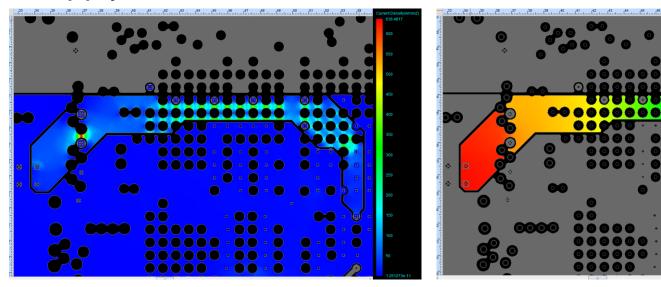
Feasibility



Question from a customer:

"Can the routing cope with a current of 7A?"

- Microcontroller board
 - Dense design, not much place for wide traces
- Used PowerDC to simulate the current through the specific part of the PCB


- Result: Yes, routing can handle the specified current. Hotspot is caused by the connector.

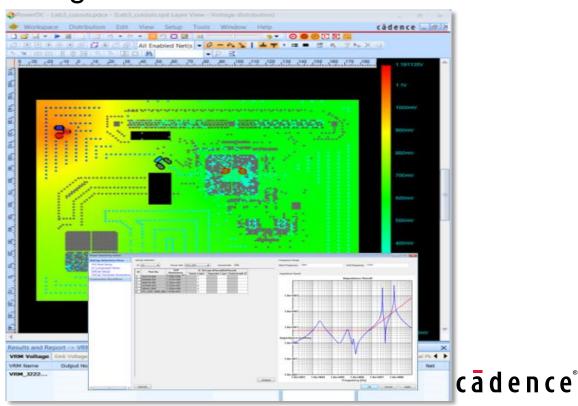
Debugging

- Issue with core supply of microcontroller
 - Stability issues during qualification
- IR drop simulation to simulate the voltage drop from the supply to the microcontroller

- Last minute PCB change, extra VIAs were added
- ΔV is about 65mV → only ~5mV supply voltage margin!

cādence[®]

Why we use PowerDC


- Initially usage:
 - High-current designs
 IPC2221B / IPC2152 not possible to use on complex boards
 Temperature rise of a PCB
 - Temperature rise of a PCB
- Now also for power distribution and voltage drop simulations

Integration with PCB tools

- Direct integration with OrCAD/Cadence PCB Editor
 - Use PI constraints during layout
 - DRC markers
- Capable to analyze designs from:
 - Altium
 - Mentor Graphics
 - ODB++
 - Zuken

Automatic Report generation

PowerDC Simulation Report

• 1 General Information

- <u>1.1 Spd File Name and Location</u>
 [Instance]
 [Insta
- 1.2 Board Stackup
- 1.3 Layout Top and Bottom Layer Views
- 2 Simulation Setup
 - <u>2.1 Electrical Setup</u>
- 3 Results
 - 3.1 Electrical Result Table
 - o 3.2 DC Analysis Block Diagram Result
- 4 Distribution Plots
 - <u>4.1 Voltage Distribution Plot</u>
 - 4.2 Plane Current Density Plot
 - 4.3 Via Current Plot
 - <u>4.4 Pin Voltage/IRdrop Plot</u>

1 General Information

1.1 Spd File Name and Location

PowerDC Version: 15.0.2.02061

File Names and Locations:

Workspace File : D:/presentations/NordCAD/1503_Update/pi_sim_workshop/lab_date
 Layout File : D:/presentations/NordCAD/1503_Update/pi_sim_workshop/lab_data/s

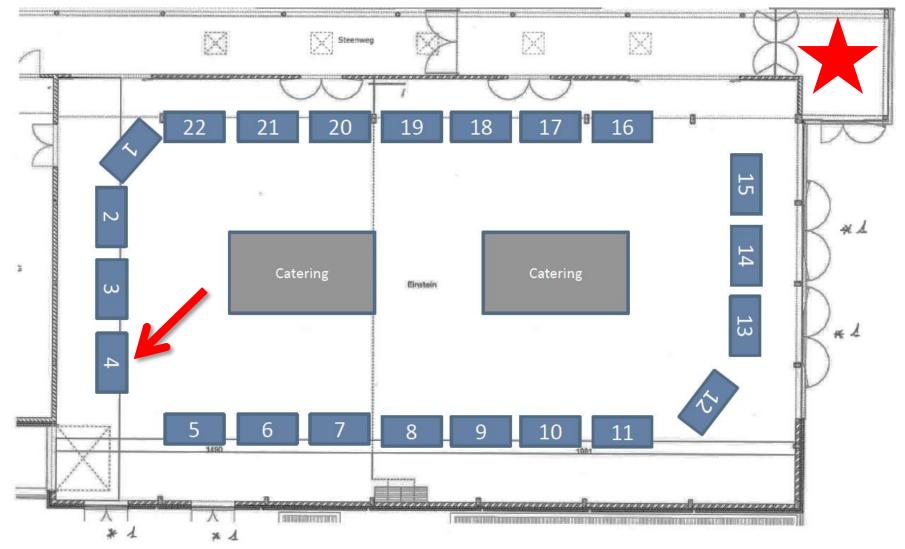
	urn to To ioard Stack	re.								
Layer #	Layer Name	Thickness(mm)	Material	Conductivity(S/m)	Er	LossTangent	Fill-in Dielectric	ShapeName	TraceWidth(mm)	Roughness(mr
1	SignalTOP	0.03048	COPPER		1	0		SignalSTOPpkgshape	0.1	0
	Medium41	0.2032	FR-4	0						
2	SignalL2-GND	0.03048	COPPER		4.5	0		PlaneSL2-GNDpkgshape	0.1	0
	Medium43	0.2032	FR-4	0						
3	SignalL3-PWR	0.03048	COPPER		4.5	0.035		PlaneSL3-PWRpkgshape	0.1	0
	Medium45	0.2032	FR-4	0						
4	SignalL4-PWR	0.03048	COPPER		4.5	0		Plane\$L4-PWRpkgshape	0.1	0
	Medium47	0.2032	FR-4	0						
5	SignalL5-GND	0.03048	COPPER		4.5	0		PlaneSL5-GNDpkgshape	0.1	0
	Medium49	0.2032	FR-4	0						
6	SignalBOTTOM	0.03048	COPPER		1	0		SignalSBOTTOMpkgshape	0.1	0
	Total Thickness	1.19888								


3.2 DC Analysis Block Diagram Result

Return to Top

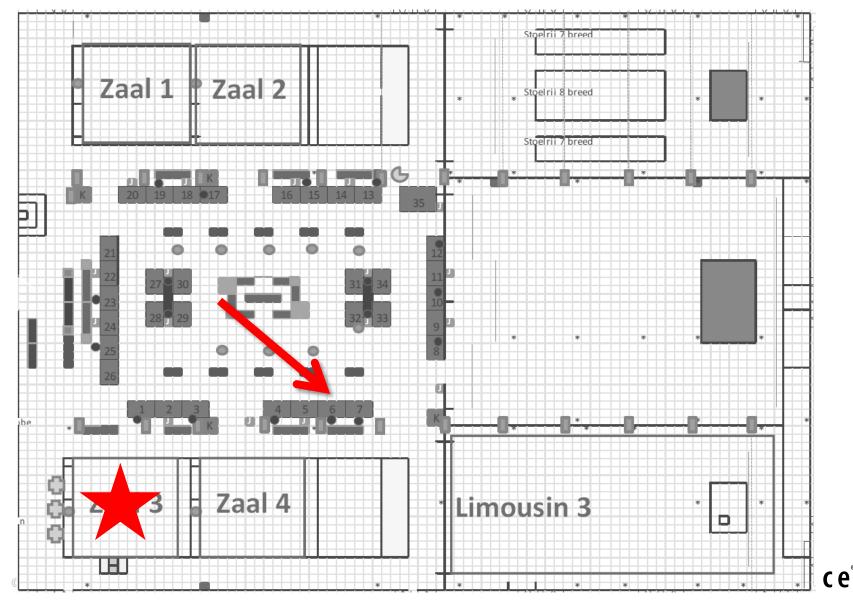
1.3 Layout Top and Bottom Layer views

1.3.1 Layout Top Layer View with Enabled Nets only



cādence°

For more information visit at booth 4



cādence[°]

For more information visit at booth 6

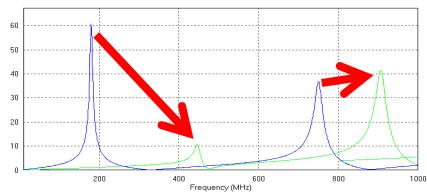
For more information: Visit us at booth 4

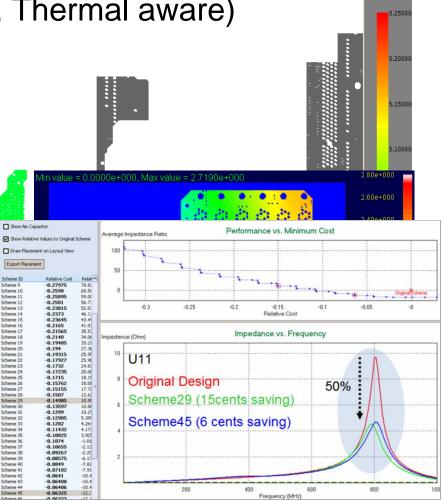
www.cb-distribution.nl

28 © 2017 Cadence Design Systems, Inc.

Cadence Power Integrity tools

Cadence PowerDC (DC Analyse, Thermal aware)


- Pre- and postlayout
- Setup Layout Constraints


Cadence Power SI (AC Analysis)

- Impedance analysis
- Location and type of capacitors

Cadence Optimize PI

- Automatic decap optimization
- Tradeof between performance cost

cādence

