
BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

1

●

FPGA hardware acceleration turns out
to be a software based design flow

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

Cereslaan 10b
5384 VT Heesch

 +31 (0)412 660088
 info@core-vision.nl

www.core-vision.nl

Frank de Bont
Trainer / Consultant

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

2

●
Accelerators and Systems

► An accelerator is a dedicated piece of IP implemented in the
configurable logic of an SoC and coupled to the processing
system

► The goal is to offload the processor's computationally
intensive tasks to the hardware where it can be executed at a
significantly higher rate

► The design of the internals of the accelerator is referred
to as the microarchitecture and is governed by coding
style and #pragmas

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

3

●

► How to connect the processor to the accelerator?
► AXI ports: general-purpose masters and slaves, ACP, high

performance, ACE, HPC
► Interrupts, WFE, WFI, polling
► Clocking
► Cache and memory utilization
► Data movement (DMA, datamover)

► How to coordinate hardware and software?
► Polling versus interrupting
► Knowing when the DMA and accelerator(s) are done
► Knowing where the data is at the end of an acceleration process
► Blocking versus non-blocking coding styles and support

System Design Challenges

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

4

●

► Achieving higher computing performance this is the primary
objective

► Saving processor cycles by offloading the computation
► High performance of the PL-based accelerator itself

► Lower latency
► Higher throughput
► Several times faster compared to software-based computation

► Ensure that data transfer delays between PS and accelerator do
not eliminate the performance gain from the accelerator

General Goals of a PL-based Accelerator

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

5

●
System-level Considerations

► What gets accelerated ?

► How is software
implemented in hardware?
► Is hardware design epertise

available?

► How will software and
hardware talk to each
other?

► Will it meet performance requirements the first try?
► What changes are required at the macro/micro-architecture

levels (or both)?

app() {
fnA();
fnB();
fnC();

}

app() {
fnA();
fnB();
fnC();

}

app() {
fnA();
fnB();
fnC();

}

SW
Implementation

SW
Implementation

SW
Implementation

HW
Implementation

HW
Implementation

HW
Implementation

SW or HW ?SW or HW ?SW or HW ?

Explore Macro
Architectures

Explore Micro
Architectures

Datamovers (DMA)
Connection (Ports)

SW Drivers

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

6

●
Zynq-7000 SoC Block Diagram

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

7

●

► Four AXI High-Performance
slave ports
► S_AXI_HP0
► S_AXI_HP1
► S_AXI_HP2
► S_AXI_HP3

► One AXI accelerator coherency
slave port
► S_AXI_ACP

Zynq Accelerator Interfaces

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

8

●

Processing System

Programmable Logic

Memory

Platform
Management Unit

Configuration and
Security Unit

System
Management

Power
Management

System
Functions

Application Processing Unit

321

ARM®
Cortex™-A53

NEON™

32 KB
I-Cache
w/Parity

Floating Point Unit
32 KB

D-Cache
w/ECC

Memory
Management

Unit

Embedded
Trace

Macrocell
4

GIC-400 SCU 1 MB L2 w/ECCCCI/SMMU

Config AES
Decryption,

Authentication,
Secure Boot

Voltage/Temp
Monitor

Timers,
WDT, Resets,

Clocking, & Debug

High-Speed
Connectivity

(Up to 6Gb/s)
DisplayPort

USB 3.0

SATA 3.1

PCIe 1.0 / 2.0

General
Connectivity

DDR4/3/3L,
LPDDR4/3

ECC Support

256 KB OCM
with ECC

Real-Time Processing Unit

21

ARM
Cortex™-R5

Vector Floating
Point Unit

128 KB
TCM w/ECC

32 KB I-Cache
w/ECC

32 KB D-Cache
w/ECC

GIC

Memory Protection
Unit

Graphics Processing Unit
ARM Mali™-400 MP2

Memory Management Unit

64 KB L2 Cache

Geometry
Processor

Pixel
Processor
Pixel

Processor 1 2

Functional
Safety TrustZone

GigE

CAN
UART

SPI
Quad SPI NOR

NAND
SD/eMMC

USB 2.0

Multichannel DMA

Storage & Signal
ProcessingBlock RAM

UltraRAM

DSP

General-purpose I/O
High-Performance I/O

High Density (Low Power) I/O

High-Speed Connectivity
16G

Transceivers 100G EMAC

PCIe ® Gen4

Interlaken

33G
Transceivers

Video Codec
H.265/H.264

AMS

Zynq UltraScale+ MPSoC

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

9

●

► Accelerator coherency port ACP

► AXI coherency extension ACE

► Four AXI High-Performance slave
ports

► Two High-Performance
coherency interfaces HPC

► Two High-Performance master ports
► Can be accessed from APU or RPU

Zynq UltraScale+ Accelerator Interfaces

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

10

●

► Custom IP in PL operates
nearly autonomously from
the PS
► May play through to

acccess the DDR using
the HP ports

Data Flow Model

► Custom IP for complex
function and data flow

► PS used for control and
resource management
► Minimal to no data

processing by the CPUs

Standard MemStandard Mem

Standard IPStandard IPStandard IP

DDRDDR

Custom IPCustom IP

Custom I/OCustom I/O

C
ustom

 I/O
C

ustom
 I/O

Custom IPCustom IP

C
us

to
m

 I/
O

C
us

to
m

 I/
O

AXI (HP)-SlaveAXI (HP)-Slave

A
X

I M
as

te
r

A
X

I M
as

te
r

oror

AXI (HP)-Slave

A
X

I M
as

te
r

or

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

11

●
Acceleration Model

► Communications between
► GP ports uses for accelerator management
► Data moved on high-efficiency ports (ACP/HPx)
► Interrupts or event signals used to signal significant occurrences

► PS primary configures data
for the accelerator
► Can also perform significant

tasks

► PL for hardware acceleration
► Custom IP tightly coupled

with processor
► Accelerator reacts to PS

Standard MemStandard Mem

Standard IPStandard IPStandard IP

Custom IPCustom IP

Custom I/OCustom I/O

C
ustom

 I/O
C

ustom
 I/O

Custom IPCustom IP

C
us

to
m

 I/
O

C
us

to
m

 I/
O

AXI - ACPAXI - ACP

A
X

I -
H

P
A

X
I -

H
P

oror

AXI - ACP

A
X

I -
H

P

or

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

12

●

D
D

R

L1 D$ L1 I$

L2 (I&D)$
SCU

A
C

P Accelerator

L1 D$ L1 I$

event signals

Typical ACP Accelerator Example

► 2. CPU notifies the accelerator via the event bus to begin data operations.

► 3. The Accelerator issues are read into the SCU via an AXI slave through the ACP.
Data may be returned from L1 or L2 cache, OCM, or (worst case) from DDR.

► 4. After processing, the accelerator writes back into the specified memory
location which may be in L1, L2, OCM, or DDR via the AXI slave connected
to the ACP.

2

3

4

► 1. CPU leaves (updates) data in either the L1 or L2 cache depending on the
volume of data to move to the accelerator.

1

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

13

●
Typical ACP Accelerator Example cont

►

► 5. The SCU ensures coherency by placing the data into the appropriate location,
ideally L1 or L2 cache, but may be into the DDR. This is handled transparently by
the SCU; neither the accelerator nor the CPUs need to worry about this.

► 6. The Accelerator notifies the PS via the event bus that it has completed.

► 7. The Accelerator is now out of the picture and one or both of the CPUs begin
operating on the returned data which should now be in a near (fast) memory
(L1, L2, OCM). Where there is too much data or the wrong addresses are
targeted, data movement will involve DDR or other slower memories.

D
D

R

L1 D$ L1 I$

L2 (I&D)$
SCU

A
C

P Accelerator

L1 D$ L1 I$

event signals

1

2

3

4

5

6

7

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

14

●

HW / SW Partition

HW Design
(Verilog / VHDL / HLS)

(g)
HW Connectivity
(IPI Block Design)

SW Driver
(Low-level C)

SW Connectivity
(C/C++)

Req. Met?

System Spec
(C/C++)

Vivado / HLS

Vivado IPI

SDK / OS Tools

SDK

IP

Application

IP

Data path

Drivers /
Middleware

PL

PS

Design Flow without SDSoC

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

15

●
Add Directives to your C/C++-code

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

16

●
Add #Pragma to your C/C++-code

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

17

●
Compare different Solutions

► Each solution uses a
different directive file
► Constraints

► Improved latency using
a pipeline directive or
#pragma

► Performance gain
comes with area
overhead

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

18

●
Design Flow with SDSoC

Function Selection

Refine Code

Req. Met?

System Spec
(C/C++)

IP

Application

IP

Glue Logic

Driver /
Middleware

PL

PS

► Code typically needs to
be refined to achieve
optimal results

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

19

●

► Migrate C/C++ functions
to hardware

► System-level debug
and profile

► Simple hardware-
software partitioning

► Full system generation
including driver and
hardware connectivity

1
-
2
4

C/C++ ApplicationsC/C++ Applications

System-level ProfilingSystem-level Profiling

Specify Functions for
Acceleration

Specify Functions for
Acceleration

Full System GenerationFull System Generation

Performance
Estimation

Embedded Design Flow with SDSoC

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

20

●
SDSoC System Level Profiling

► Rapid system performance
estimation
► Full system estimation

(programmable logic, data
communication, processing
system)

► Reports SW/HW cycle level
performance and hardware
utilization

► Automated performance
measurement
► Runtime measurement by

instrumentation of cache,
memory, and bus utilization

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

21

●
SDSoC System Level Profiling

► Rapid system performance
estimation
► Full system estimation

(programmable logic, data
communication, processing
system)

► Reports SW/HW cycle level
performance and hardware
utilization

► Automated performance
measurement
► Runtime measurement by

instrumentation of cache,
memory, and bus utilization

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

22

●

Our competences
Core|Vision has more than 125 man years of design experience in
hard- and software development. Our competence areas are:

► System Design
► FPGA Design
► Consultancy / Training
► Digital Signal Processing
► Embedded Real-time Software
► App development, IOS Android
► Data Acquisition, digital and analog
► Modeling & Simulation
► PCB design & Layout
► Doulos & Xilinx Training Partner

Core|Vision

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

23

●

Q&A
Cereslaan 10b

5384 VT Heesch
 +31 (0)412 660088

www.core-vision.nl
Email : info@core-vision.nl

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

24

●

Visit our booth 27

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

25

●

► Essentials of FPGA Design 1 day
► Designing for Performance 2 days
► Advanced FPGA Implementation 2 days
► Design Techniques for Lower Cost 1 day
► Designing with Spartan-6 and Virtex-6 Family 3 days
► Essential Design with the PlanAhead Analysis Tool 1 day
► Advanced Design with the PlanAhead Analysis Tool 2 days
► Xilinx Partial Reconfiguration Tools and Techniques 2 days
► Designing with the 7 Series Families 2 days

Training Program

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

26

●
Training Program

► Designing FPGAs Using the Vivado Design Suite 1 2 days
► Designing FPGAs Using the Vivado Design Suite 2 2 days
► Designing FPGAs Using the Vivado Design Suite 3 2 days
► Designing FPGAs Using the Vivado Design Suite 4 2 days
► Designing with the UltraScale and UltraScale+ Architecture 2 days
► Vivado Design Suite for ISE Software Project Navigator User 1 day
► Vivado Design Suite Advanced XDC and Static Timing Analysis

for ISE Software User 2 days

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

27

●

► Designing with Multi Gigabit Serial IO 3 days
► High Level Synthesis with Vivado 2 days
► C-Based HLS Coding for Hardware Designers 1 day
► C-Based HLS Coding for Software Designers 1 day
► DSP Design Using System Generator 2 days
► Essential DSP Implementation Techniques for Xilinx FPGAs 2 days

Training Program

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

28

●
Training Program

► Embedded Systems Design 2 days
► Embedded Systems Software Design 2 days
► Advanced Features and Techniques of SDK 2 days
► Advanced Features and Techniques of EDK 2 days
► Zynq All Programmable SoC Systems Architecture 2 days
► Zynq UltraScale+ MPSoC for the System Architect 2 days
► Introduction to the SDSoC Development Environment 1 day
► Advanced SDSoC Development Environment & Methodology 2 days

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

29

●

► VHDL for Designers 3 days
► Advanced VHDL 2 days
► Comprehensive VHDL 5 days
► Expert VHDL Verification 3 days
► Expert VHDL Design 2 days
► Expert VHDL 5 days
► Essential Digital Design Techniques 2 days

Training Program

