CORE

NEXT LEVEL

Vision

EMBEDDED DEVELOPMENT

FPGA hardware acceleration turns out
to be a software based design flow

Frank de Bont Cereslaan 10b

Trainer / Consultant Sien. UL P e
@ +31 (0)412 660088

>4l info@core-vision.nl
www.core-vision.nl

AAAAAAAAAAAAA
DDDDDDDD

£ XILINX

LLLLL OGRAMMABLE~

Accelerators and Systems

» An accelerator is a dedicated piece of IP implemented in the
configurable logic of an SoC and coupled to the processing
system

» The goal is to offload the processor's computationally
intensive tasks to the hardware where it can be executed at a
significantly higher rate

» The design of the internals of the accelerator is referred
to as the microarchitecture and is governed by coding
style and #pragmas

I v 24
NEXT LEVEL EMBEDDED DEVELOPMENT

System Design Challenges

» How to connect the processor to the accelerator?
» AXI ports: general-purpose masters and slaves, ACP, high
performance, ACE, HPC

Interrupts, WFE, WFI, polling
Clocking

Cache and memory utilization

Data movement (DMA, datamover)

vVvyvyy

» How to coordinate hardware and software?
» Polling versus interrupting

» Knowing when the DMA and accelerator(s) are done
» Knowing where the data is at the end of an acceleration process

» Blocking versus non-blocking coding styles and support

I « v iz
NEXT LEVEL EMBEDDED DEVELOPMENT

» Achieving higher computing performance this is the primary
objective

» Saving processor cycles by offloading the computation
» High performance of the PL-based accelerator itself
» Lower latency

» Higher throughput
» Several times faster compared to software-based computation

» Ensure that data transfer delays between PS and accelerator do
not eliminate the performance gain from the accelerator

I ¢ 04
NEXT LEVEL EMBEDDED DEVELOPMENT

A1‘20KT(-
System-level Considerations v

ALL PROGRAMMABLE

» What gets accelerated ?

Explore Macro

/!— Architectures

» How iIs software

Implemented in hardware?
» |Is hardware design epertise
available?

Explore Micro
Architectures

Datamovers (DMA)
Connection (Ports)
SW Drivers

» How will software and
hardware talk to each
other?

» Will it meet performance requirements the first try?
» What changes are required at the macro/micro-architecture
levels (or both)?

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT c 0 R E I Vf_gion 5

NEXT LEVEL EMBEDDED DEVELOPMENT

Zynq-7000 SoC Block Diagram

MK D&E
AT event
2017

£ XILINX

ALL PROGRAMMABLE

Programmable

I € s
NEXT LEVEL EMBEDDED DEVELOPMENT

12 OKT & X713

Zyng Accelerator Interfaces

PL AXI_HP to
= 1 t

» Four AXI High-Performance
slave ports
» S_AXI_HPO
» S _AXI_HP1
» S _AXI_HP2
» S _AXI_HP3

HPO.

» One AXI accelerator coherency =
slave port
» S _AXI_ACP

I v v
NEXT LEVEL EMBEDDED DEVELOPMENT

Zyng UltraScale* MPSoC

BRABANTHALLEN
DEN BOSCH

£ XILINX

ALL PROGRAMMABLE

Processing System

Application Processing Unit
NEON™

ARM® I
Cortex™-A53

32KB ||
|-Cache
w/Parity

Floating Point Unit

32KB || Memory
D-Cache {[Management
W/ECC Unit

Real-Time Processing Unit

Vector Floating r—
ARM Point Unit
g
Unit

2 KB I-Cache||32 KB D-Cache
w/ECC w/ECC

128 KB
TCM w/ECC

DDRA4/3/3L,
LPDDR4/3
ECC Support

256 KB OCM
with ECC

System
Management

Power
Management

Functional
Safety

Graphics Processing Unit
ARM Mali™-400 MP2

Geometry Pixel
Processor Processor 1

Memory Management Unit

64 KB L2 Cache

System

onfg Functions

Decryption,
Authentication,
Secure Boot

Multichannel DMA

Voltage/Temp Timers,
Monitor WDT, Resets,
TrustZone Clocking, & Debug

High-Speed
Connectivity
Up to 6Gh/s
DisplayPort

|' USB 3.0 |

l SATA 3.1 |
l PCle 1.0/2.0 |

General
__ Gige

USB 2.0
CAN
UART
SPI
[Quad SPINOR |
NAND
SD/eMMC

Programmable Logic

Storage & Signal
Block RAM

UltraRAM

DSP

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

General-purpose 1/0
High-Performance 1/0

High Density (Low Power) I/O

High-Speed Connectivi
16G
Transceivers
33G —
PCle ® Gen4

Interlaken

CORE

NEXT LEVEL

Video Codec
H.265/H.264

AMS

Vision

EMBEDDED DEVELOPMENT

Zynq UltraScale*™ Accelerator Interfaces

€a NILHNNA

LLLLL OGRAMMABLE~

» Accelerator coherency port ACP PS PL
- | APY_fe—— ACF
» AXI coherency extension ACE I} o
_ ACE
» Two High-Performance HPC(2)
coherency interfaces HPC 5 o
2 =
] E Performance
» Four AXI High-Performance slave S Slave (4)
& High
p orts 8 Performance
_ Master(2)
» Two High-Performance master ports p — PL_LPD
» Can be accessed from APU or RPU | RO
RPU |

I € s
NEXT LEVEL EMBEDDED DEVELOPMENT

Data Flow Model £ XILINX

PROGR

» Custom IP for complex Standard Mem
function and data flow .
» PS used for control and ZYNO__"- 5
resource management ZYNQ o = Clstom Ip
. s < UltraSCALE+ Q.
» Minimal to no data B S &stom 110

processing by the CPUs

» Custom IP in PL operates
Custom IP

nearly autonomously from
the PS
» May play through to
acccess the DDR using
the HP ports

NEXT LEVEL EMBEDDED DEVELOPMENT

O/l wolsnoy

Q
S
-
»
5

Acceleration Model £ XILINX

ROGR.

» PS primary configures data . Standard Mem
for the accelerator

» Can also perform significant .
tasks el Melstom 1P

» PL for hardware acceleration &lStom 110

» Custom [P tightly coupled
with processor

» Accelerator reacts to PS Custom IP

Standard IP

O/l LUOlsm

» Communications between
» GP ports uses for accelerator management
» Data moved on high-efficiency ports (ACP/HPX)
» Interrupts or event signals used to signal significant occurrences

NEXT LEVEL EMBEDDED DEVELOPMENT

D&E
Typical ACP Accelerator Example “

ALL PROGRAMMABLE

» 1. CPU leaves (updates) data in either the L1 or L2 cache depending on the
volume of data to move to the accelerator.

» 2. CPU notifies the accelerator via the event bus to begin data operations.

» 3. The Accelerator issues are read into the SCU via an AXI slave through the ACP.
Data may be returned from L1 or L2 cache, OCM, or (worst case) from DDR.

» 4. After processing, the accelerator writes back into the specified memory
location which may bein L1, L2, OCM, or DDR via the AXI slave connected

to the ACP.
@event signals

Accelerator

I < s
NEXT LEVEL EMBEDDED DEVELOPMENT

D&E
Typical ACP Accelerator Example con .°

ALL PROGRAMMABLE

» 5. The SCU ensures coherency by placing the data into the appropriate location,
ideally L1 or L2 cache, but may be into the DDR. This is handled transparently by
the SCU; neither the accelerator nor the CPUs need to worry about this.

» 6. The Accelerator notifies the PS via the event bus that it has completed.

» 7. The Accelerator is now out of the picture and one or both of the CPUs begin
operating on the returned data which should now be in a near (fast) memory
(L1, L2, OCM). Where there is too much data or the wrong addresses are
targeted, data movement will involve DDR or other slower memories.

(ir?)
b

I < s
NEXT LEVEL EMBEDDED DEVELOPMENT

-?;o}n_
Design Flow without SDSoC v

ALL PROGRAMMABLE

System Spec

(CIC++)

—> W'/ SW Partition .

IP
/ Design . :
(Verilog / VHDL / HLS)

pw— -
onnectivity Data path ’
(IP1'Block Design)

-
S
SW Driver #
(Low-level C) rvers

Middleware

ectivity
(C/IC++)

Application PS

I o 0 [

NEXT LEVEL EMBEDDED DEVELOPMENT

Add Directives to your C/C**-code

12 OKT <

BRABANTHALLEN
DEN BOSCH

£ XILINX

ALL PROGRAMMABLE

W_Eﬁ Synthesis(solution7) | £7 compare reports |

5 |(8= outline | Directive 52

4 © dct_1d
41 dct_coeff_table
4 %' DCT_Outer_Loop
% HLS PIPELINE
% DCT_Inner_Loop

15 for(n = @, tmp = @; n < DCT_SIZE; n++) { =
16 int coeff = (int)dct_coeff_table[k][n];

17 tmp += src[n] * coeff;

18 }

19 dst[k] = DESCALE(tmp, CONST_BITS);

20 }

21 } T
22

23 void dct_Zd(w_ﬂlE],

24 dct_data_t out_block[DCT_: 1)

25 {

26 dct_data_t row_outbuf[DCT_SIZE][DCT_SIZE];

A
J‘ % HLS INLINE l

%[1 col_outbuf
caol_inhuf

27 dct_data_t col_outbuf[DCT_SIZE][DCT_SIZE], col_inbuf[DCT_SIZE][DCT_SIZE];
28 unsigned i, j;

29

30 // DCT rows

31 Row_DCT_Loop:

32 for(i = @; i < DCT_SIZE; i++) {

33 dct_1d(in_block[i], row_outbuf[i]);

34 }

35 // Transpose data in order to re-use 1D DCT c
36 Xpose_Row_Outer_Loop:
37 for {j = 9; 3 < DET
38 Xpose_Row_Inner_Loop:
39 for(i = @; i < DCT_SIZE; i++)

40 col _inbuf[j1[i] = row_outbuf[i][]j];
41 // DCT columns

42 Col_DCT_Loop:

43 for (1 = 0; i < DCT_SIZE; i++) {

44 dct_1d(col_inbuf[i], col_outbuf[i]);
45 }
46 // Transpose data back into natu
47 Xpose_Col_Outer_Loop:
48 for (j = 0; j < DCT
49 Xpose_Col_Inner_Loop:

50 for(i = @; 1 < DCT_SIZE; i++)
51 out_block[j][i] = col_outbuf[i][]j];
52 }

L]

1

1
r'élb HLS ARRAY_RESHAPE variable=col_inbuf complete dim=2
H_UL -toop

%' Xpose_Row_Outer_Loop
- o

% HLS PIPELINE

1Y
4z
>
o

o
wr
3
(o)
o |
2
o
5
8
o
o
°

%" RD_Loop_Row

4 %' RD_Loop_Col
% HLS PIPELINE

4 @ write_data

%" WR_Loop_Row

4 %" 'WR_Loop_Col

% HLS PIPELINE

»

4 @ dct
% HLS DATAFLOW
@ input
® output
41 buf_2d_in
% HLS ARRAY_RESHAPE variable=buf_2d_in complete dim=2
«[1 buf_2d_out

Vision

CORE|

NEXT LEVEL

12 OKT &

BRABANTHALLEN
DEN BOSCH

£ XILINX

ALL PROGRAMMABLE

Add #Pragma to your C/C**-code

= O | (3= Outline | Directive 2

[€ *dct.c fr;’ﬂ Synthesis(solut fEi rgb_2_gray.c f@ sharpen.c
14T 7

145° static void linebuffer_shift_up(linebuffer_t M, int col) { “ 5| « @ sovel_operator
146 #ifndef SUPPRESS_EDGE_DETECT_OPTIMIZATION 1 x_op
147 #pragma AP inline 1y op
148 #endif 4 % for Statement
:‘;g — %' for Statement
151 Sor {1 = LBUE HETGT ~ g 4 > 0y i = St flier
152 #ifndef SUPPRESS_EDGE_DETECT_OPTIMIZATION :: 2u:ff_2

| uff ¢

153 #pragma AP unroll

154 #endif 4 %' for Statement
155 M[i]l[cel] = M[i - 1][co 4 %' for Statement
156) } # APPIPELINENI =1
157 3
ffer_shift_u,
158 1 e

159= /* Line buffer getval
160 * Returns the data value in the line buffer at position RowIndex, ColIndex
161 */

162- static uint8_t linebuffer_getval(linebuffer_t M, int RowIndex, int CollIndex) {
163 #ifndef SUPPRESS_EDGE_DETECT_OPTIMIZATION

164 #pragma AP inline

165 #endif

166 uint8_t return_value;

167 return_value = M[RowIndex][ColIndex];

168 return return_value;

169 } ate

170 # AP unroll
171= /* Line buffer insert bottom 4 % for Statement
172 * Inserts a new value in the bottom row of the line at column = col # AP unroll
173 * The bottom is row = @ ® window insart
174 %/ 4 @ win oYu_.lnse
175 static void linebuffer_insert_bottem{linebuffer_t M, uint8_t value, int col) { # AP inline

176 #ifndef SUPPRESS_EDGE_DF OPTIMIZATION 4 © window_getval
177 #pragma AP inline # AP inline

178 #endif

179

180 M[@][col] = value;

181 }

182 >

< {11 »

CORE|Vision

NEXT LEVEL EMBEDDED DEVELOPMENT

Compare different Solutions

» Each solution uses a
different directive file

» Constraints

» Improved latency using
a pipeline directive or
#pragma

» Performance gain

comes with area
overhead

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

Vivado HLS Report Comparison

All Compared Solutions

solution?: xc7z020clg484-1
solutionl: xc7z020clg484-1

Performance Estimates

E Timing (ns)

Clock
ap_clk Target 10.00
Estimated 9.73
E Latency (clock cycles)
solution?
Latency min | 627
max = 627
Interval min | 132
max L132

solution? solutionl

10.00
6.60

solutionl
3959
3959
3960
3960

Utilization Estimates

BRAM_18K
DSP48E

FF

LuT

solution?
22
16
3769

3499

solutionl

CORE

NEXT LEVEL

[¢ dct.c ﬁ'g'ﬂ Synthesis(solution7) W

12 OKT &

BRABANTHALLEN
DEN BOSCH ﬂ!
2017

£ XILINX

ALL PROGRAMMABLE

Vision

EMBEDDED DEVELOPMENT

Design Flow with SDSoC

System Spec
(C/IC++)

£ XILINX

ROGR.

gnction Selection m

i Glue Log|

ZYNQ ™

v MPSoC
rlver !

Middleware

Refine Code

» Code typically needs to
be refined to achieve
optimal results

Application PS
Req. Met?
BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT c o R [V’SID” 18
NEXT LEVEL EMBEDDED DEVELOPMENT

Embedded Design Flow with SDSoC o

SDSoC™

Environment

» Migrate C/C** functions
++ Applications
to hardware

Perfgrma}nce
and P rofile Estimation em-level Profiling
|

» System-level debug

» Simple hardware-

software partitioning Specify Functions for

» Full system generation
Including driver and

eleration

hardware connectivity

ZYNQ™ ZYNQ™

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT

SoC MPSoC

CORE|ViSion

NEXT LEVEL EMBEDDED DEVELOPMENT

SDSoC System Level Profiling -

£ XILINX
» Rapid system performance chmpmilii
estimation

ALL PROGRAMMABLE

-

» Full system estimation T "
(programmable logic, data e = =T =
communication, processing :”dejll_[_ﬂh{.mﬂly ‘ ==
system) SRR -

» Reports SW/HW cycle level R ITITTEEEEE e &
performance and hardware =TI Y
utilization =

» Runtime measurement by >
.) . qII_System
iInstrumentation of cache, Optimizy
memory, and bus utilization

I < s
NEXT LEVEL EMBEDDED DEVELOPMENT

-
» Automated performance
Specify C/C++ Functloiii
measurement for Accel

12 OKT <

BRABANTHALLEN
DEN BOSCH

£ XILINX

ALL PROGRAMMABLE

SDSoC System Level Profiling

Performance, speedup and resource estimation report for the ‘Topic' project

B

Note: Performance estimation assumes worst-case latency of hardware accelerators, it also assumes worst-case data transfer size for arrays (if transfer
size cannot be determined at compile time). If the accelerator latency and data transfer size at run-time is smaller than such assumptions, the
performance estimation will be more pessimistic than the actual performance.

Summary
Performance estimates for ‘'main’ function

SW-only (Measured cycles) - pmsaw

HW accelerated (Estimated cycles) I 96206486
Estimated speedup 142.78
Details

Performance estimates for functions ‘sobel_filter, sharpen_filter and rgb_2_gray’

SW-only (Measured cycles) - ymo

HW accelerated (Estimated cycles) I 13854282
Estimated speedup 197.91

Resource utilization estimates for hardware accelerators

 Resource Used Total % Utilization
DSP 3 220 136
BRAM 6 140 | 429
Lt 715 53200 134
FF 600 106400 056

NEXT LEVEL EMBEDDED DEVELOPMENT

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT c 0 R E | Vf_gfon

Core|Vision

£ XILINX

LLLLL OGRAMMABLE~

Our competences

Core|Vision has more than 125 man years of desigh experience in
hard- and software development. Our competence areas are:

System Design

FPGA Design
Consultancy / Training

Digital Signal Processing
Embedded Real-time Software
App development, I0S Android
Data Acquisition, digital and analog &=
Modeling & Simulation 3
PCB design & Layout

Doulos & Xilinx Training Partner

NEXT LEVEL EMBEDDED DEVELOPMENT

VVVVYVYVYVYYVYYVYY

BRABANTHALLEN
DEN BOSCH Lm
2017

CORE|ViSion

NEXT LEVEL EMBEDDED DEVELOPMENT

«A

Cereslaan 10b
5384 VT Heesch
@ +31(0)412 660088

www.core-vision.nl
Email : info@core-vision.nl

I < s
NEXT LEVEL EMBEDDED DEVELOPMENT

12 OKT « [.X:1 3

BRABANTHALLEN
DEN BOSCH ev—-..u-e—n..!
2017

™
S ‘
=
rm

CORE|Vision

==ty
NEXT LEVEL EMBEDDED DEVELOPMENT Q
N

EMBEDDED DEVELOPMENT

TIATT LXIN

« FPGA DESIGN

« SYSTEM DEVELOPMENT

» DEDICATED ELECTRONICS

« EMBEDDED S50FTWARE

= DESIGN SERVICES

= MODELING AND SIMULATION

Essentials of FPGA Design 1 day

Designing for Performance 2 days
Advanced FPGA Implementation 2 days
Design Techniques for Lower Cost 1 day

Designing with Spartan-6 and Virtex-6 Family 3 days
Essential Design with the PlanAhead Analysis Tool 1 day

Advanced Design with the PlanAhead Analysis Tool 2 days
Xilinx Partial Reconfiguration Tools and Techniques 2 days

Designing with the 7 Series Families 2 days

Vision

EMBEDDED DEVELOPMENT

Designing FPGAs Using the Vivado Design Suite 1 2 days

Designing FPGAs Using the Vivado Design Suite 2 2 days
Designing FPGAs Using the Vivado Design Suite 3 2 days
Designing FPGAs Using the Vivado Design Suite 4 2 days

Designing with the UltraScale and UltraScale* Architecture 2 days
Vivado Design Suite for ISE Software Project Navigator User 1 day
Vivado Design Suite Advanced XDC and Static Timing Analysis

for ISE Software User 2 days

Vision

EMBEDDED DEVELOPMENT

Training Program

» Designing with Multi Gigabit Serial 10 3 days
» High Level Synthesis with Vivado 2 days
» C-Based HLS Coding for Hardware Designers 1 day
» C-Based HLS Coding for Software Designers 1 day
» DSP Design Using System Generator 2 days
» Essential DSP Implementation Techniques for Xilinx FPGAs 2 days

NEXT LEVEL EMBEDDED DEVELOPMENT

Embedded Systems Design 2 days

Embedded Systems Software Design 2 days
Advanced Features and Techniques of SDK 2 days
Advanced Features and Techniques of EDK 2 days
Zynq All Programmable SoC Systems Architecture 2 days
Zynq UltraScale* MPSoC for the System Architect 2 days
Introduction to the SDSoC Development Environment 1 day

Advanced SDSoC Development Environment & Methodology 2 days

Vision

EMBEDDED DEVELOPMENT

Training Program L

» VHDL for Designers 3 days
» Advanced VHDL 2 days
» Comprehensive VHDL 5 days
» Expert VHDL Verification 3 days
» Expert VHDL Design 2 days
» Expert VHDL 5 days
» Essential Digital Design Techniques 2 days

DOULOS

NEXT LEVEL EMBEDDED DEVELOPMENT

