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FPGA hardware acceleration turns out 
to be a software based design flow
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Accelerators and Systems

► An accelerator is a dedicated piece of IP implemented in the
configurable logic of an SoC and coupled to the processing 
system

► The goal is to offload the processor's computationally
intensive tasks to the hardware where it can be executed at a
significantly higher rate

► The design of the internals of the accelerator is referred
to as the microarchitecture and is governed by coding 
style and #pragmas
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► How to connect the processor to the accelerator?
► AXI ports: general-purpose masters and slaves, ACP, high 

performance, ACE, HPC
► Interrupts, WFE, WFI, polling 
► Clocking
► Cache and memory utilization 
► Data movement (DMA, datamover)

► How to coordinate hardware and software?
► Polling versus interrupting
► Knowing when the DMA and accelerator(s) are done
► Knowing where the data is at the end of an acceleration process 
► Blocking versus non-blocking coding styles and support

System Design Challenges
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► Achieving higher computing performance this is the primary
objective

► Saving processor cycles by offloading the computation 
► High performance of the PL-based accelerator itself

► Lower latency 
► Higher throughput
► Several times faster compared to software-based computation

► Ensure that data transfer delays between PS and accelerator do 
not eliminate the performance gain from the accelerator

General Goals of a PL-based Accelerator
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System-level Considerations

► What gets accelerated ?

► How is software 
implemented in hardware?
► Is hardware design epertise

available?

► How will software and 
hardware talk to each 
other?

► Will it meet performance requirements the first try?
► What changes are required at the macro/micro-architecture 

levels (or both)?

app() {    
fnA();    
fnB();    
fnC();

}

app() {    
fnA();    
fnB();    
fnC();

}

app() {    
fnA();    
fnB();    
fnC();

}

SW
Implementation

SW
Implementation

SW
Implementation

HW
Implementation

HW
Implementation

HW
Implementation

SW or HW ?SW or HW ?SW or HW ?

Explore Macro
Architectures

Explore Micro
Architectures

Datamovers (DMA)
Connection (Ports)

SW Drivers
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Zynq-7000 SoC Block Diagram
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► Four AXI High-Performance 
slave ports
► S_AXI_HP0
► S_AXI_HP1
► S_AXI_HP2
► S_AXI_HP3

► One AXI accelerator coherency 
slave port
► S_AXI_ACP

Zynq Accelerator Interfaces



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

8

●

Processing System
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► Accelerator coherency port ACP

► AXI coherency extension ACE

► Four AXI High-Performance slave 
ports

► Two High-Performance 
coherency interfaces HPC

► Two High-Performance master ports
► Can be accessed from APU or RPU

Zynq UltraScale+ Accelerator Interfaces
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► Custom IP in PL operates 
nearly autonomously from 
the PS
► May play through to 

acccess the DDR using 
the HP ports

Data Flow Model

► Custom IP for complex 
function and data flow

► PS used for control and 
resource management
► Minimal to no data 

processing by the CPUs
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Acceleration Model

► Communications between
► GP ports uses for accelerator management
► Data moved on high-efficiency ports (ACP/HPx)
► Interrupts or event signals used to signal significant occurrences

► PS primary configures data 
for the accelerator
► Can also perform significant 

tasks

► PL for hardware acceleration
► Custom IP tightly coupled 

with processor
► Accelerator reacts to PS
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D
D

R

L1 D$ L1 I$

L2 (I&D)$
SCU

A
C

P Accelerator

L1 D$ L1 I$

event signals

Typical ACP Accelerator Example

► 2. CPU notifies the accelerator via the event bus to begin data operations.

► 3. The Accelerator issues are read into the SCU via an AXI slave through the ACP. 
Data may be returned from L1 or L2 cache, OCM, or (worst case) from DDR.

► 4. After processing, the accelerator writes back into the specified memory 
location which may be in L1, L2, OCM, or DDR via the AXI slave connected 
to the ACP.

2

3

4

► 1. CPU leaves (updates) data in either the L1 or L2 cache depending on the 
volume of data to move to the accelerator.

1
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Typical ACP Accelerator Example cont

►

► 5. The SCU ensures coherency by placing the data into the appropriate location, 
ideally L1 or L2 cache, but may be into the DDR. This is handled transparently by 
the SCU; neither the accelerator nor the CPUs need to worry about this.

► 6. The Accelerator notifies the PS via the event bus that it has completed.

► 7. The Accelerator is now out of the picture and one or both of the CPUs begin 
operating on the returned data which should now be in a near (fast) memory 
(L1, L2, OCM). Where there is too much data or the wrong addresses are 
targeted, data movement will involve DDR or other slower memories.

D
D

R

L1 D$ L1 I$

L2 (I&D)$
SCU

A
C

P Accelerator

L1 D$ L1 I$

event signals
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HW / SW Partition

HW Design
(Verilog / VHDL / HLS)

( g )
HW Connectivity
(IPI Block Design)

SW Driver
(Low-level C)

SW Connectivity
(C/C++)

Req. Met?

System Spec
(C/C++)

Vivado / HLS

Vivado IPI

SDK / OS Tools

SDK

IP

Application

IP

Data path

Drivers / 
Middleware

PL

PS

Design Flow without SDSoC
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Add Directives to your C/C++-code 
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Add #Pragma to your C/C++-code 
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Compare different Solutions

► Each solution uses a 
different directive file 
► Constraints

► Improved latency using 
a pipeline directive  or 
#pragma

► Performance gain 
comes with area 
overhead
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Design Flow with SDSoC

Function Selection

Refine Code

Req. Met?

System Spec
(C/C++)

IP

Application

IP

Glue Logic

Driver / 
Middleware

PL

PS

► Code typically needs to 
be refined to achieve 
optimal results
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► Migrate C/C++ functions
to hardware

► System-level debug
and profile

► Simple hardware-
software partitioning

► Full system generation
including driver and
hardware connectivity

1
-
2
4

C/C++ ApplicationsC/C++ Applications

System-level ProfilingSystem-level Profiling

Specify Functions for 
Acceleration

Specify Functions for 
Acceleration

Full System GenerationFull System Generation

Performance 
Estimation 

Embedded Design Flow with SDSoC
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SDSoC System Level Profiling

► Rapid system performance 
estimation
► Full system estimation 

(programmable logic, data 
communication, processing 
system)

► Reports SW/HW cycle level 
performance and hardware 
utilization

► Automated performance 
measurement
► Runtime measurement by 

instrumentation of cache, 
memory, and bus utilization



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

21

●
SDSoC System Level Profiling

► Rapid system performance 
estimation
► Full system estimation 

(programmable logic, data 
communication, processing 
system)

► Reports SW/HW cycle level 
performance and hardware 
utilization

► Automated performance 
measurement
► Runtime measurement by 

instrumentation of cache, 
memory, and bus utilization
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Our competences
Core|Vision has more than 125 man years of design experience in 
hard- and software development. Our competence areas are:

► System Design
► FPGA Design
► Consultancy / Training
► Digital Signal Processing
► Embedded Real-time Software
► App development, IOS Android
► Data Acquisition, digital and analog
► Modeling & Simulation
► PCB design & Layout
► Doulos & Xilinx Training Partner

Core|Vision
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Q&A
Cereslaan 10b

5384 VT Heesch
 +31 (0)412 660088

www.core-vision.nl
Email : info@core-vision.nl
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●

Visit our booth 27
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► Essentials of FPGA Design 1 day
► Designing for Performance 2 days
► Advanced FPGA Implementation 2 days
► Design Techniques for Lower Cost 1 day
► Designing with Spartan-6 and  Virtex-6 Family  3 days
► Essential Design with the PlanAhead Analysis Tool 1 day
► Advanced Design with the PlanAhead Analysis Tool 2 days
► Xilinx Partial Reconfiguration Tools and Techniques 2 days
► Designing with the 7 Series Families 2 days

Training Program
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Training Program

► Designing FPGAs Using the Vivado Design Suite 1 2 days
► Designing FPGAs Using the Vivado Design Suite 2   2 days
► Designing FPGAs Using the Vivado Design Suite 3   2 days
► Designing FPGAs Using the Vivado Design Suite 4 2 days
► Designing with the UltraScale and UltraScale+ Architecture 2 days
► Vivado Design Suite for ISE Software Project Navigator User 1 day
► Vivado Design Suite Advanced XDC and Static Timing Analysis 

for ISE Software User 2 days
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► Designing with Multi Gigabit Serial IO 3 days
► High Level Synthesis with Vivado 2 days
► C-Based HLS Coding for Hardware Designers 1 day
► C-Based HLS Coding for Software Designers 1 day
► DSP Design Using System Generator 2 days
► Essential DSP Implementation Techniques for Xilinx FPGAs 2 days

Training Program
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Training Program

► Embedded Systems Design 2 days
► Embedded Systems Software Design 2 days
► Advanced Features and Techniques of SDK 2 days
► Advanced Features and Techniques of EDK 2 days
► Zynq All Programmable SoC Systems Architecture  2 days
► Zynq UltraScale+ MPSoC for the System Architect 2 days
► Introduction to the SDSoC Development Environment 1 day
► Advanced SDSoC Development Environment & Methodology 2 days
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► VHDL for Designers 3 days
► Advanced VHDL 2 days
► Comprehensive VHDL 5 days
► Expert VHDL Verification 3 days
► Expert VHDL Design 2 days
► Expert VHDL 5 days
► Essential Digital Design Techniques 2 days

Training Program


