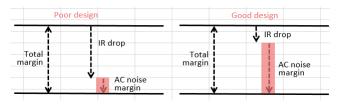
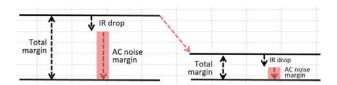


Agenda


- Why Power Delivery Network Analysis?
- Analysis types,
 - DC simulation
 - Thermal aware simulation
 - AC simulation
- PDN analysis at Prodrive Technologies
- Tools and integration

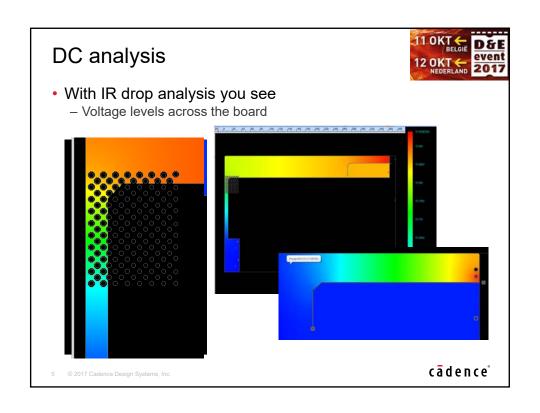
Why Is Power Distribution Analysis?

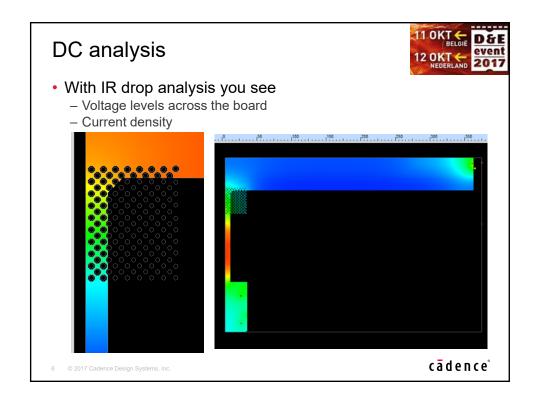
- DC voltage is the most fundamental criterion for the operation of the circuitry in the system
 - The voltage supply is allowed to deviate by an amount specified by the vendor
 - This deviation (or fluctuation) of the supply is composed of DC loss and AC noise
 - The total voltage tolerance is commonly 5% (or less) of the nominal operating voltage
 - If the tolerance is constant, then a reduction in DC loss yields a larger AC noise budget

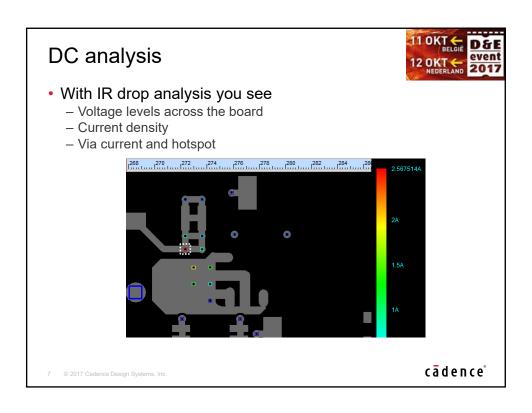

3 © 2017 Cadence Design Systems, Inc.

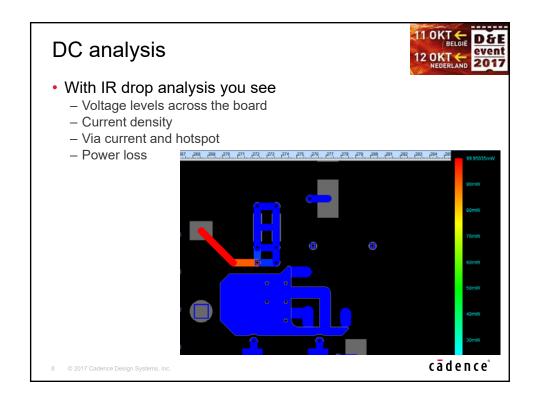
cādence°

Why Power Analysis Is Important?




- Numerous factors have combined to exacerbate the problem
 - Core voltage levels continue to drop: 1.2V and less are now common. Total margin drops from 250mv to 60mv
 - As voltage is reduced, current requirements typically increase:
 IR drop = I * R
 - Miniaturization of electronics results in fewer layers and higher densities thus reducing the available area for power net


4 © 2017 Cadence Design Systems, Inc



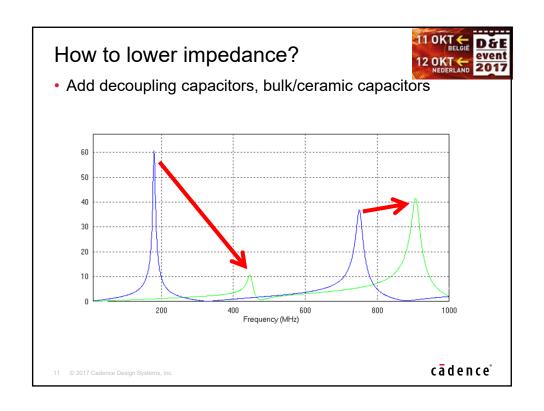
What about Thermal effects?

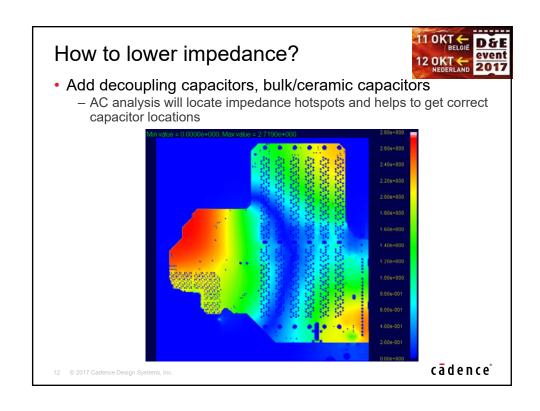
- · Heating due to current changes resistance of copper
- · Without Thermal effect IR drop estimates will be inaccurate.
- High temperature due to localized current density can cause smoke or fire hazard
- Cadence DC analysis includes effects of
 - Component heating (power dissipation), including heatsinks
 - Joule heating (PCB copper)

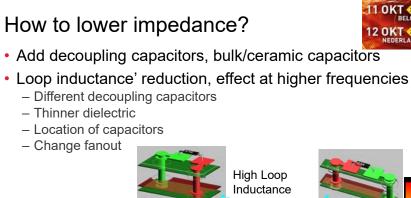
	Pure Heat Transfer Simulation (component heating only)	Electrical / Thermal Co-Simulation (component & Joule heating)	Effect of Joule Heating
Max Component Temperature	79 °C	85 °C	+6 °C
Max Board Temperature	72 °C	82 °C	+ 10 °C

9 © 2017 Cadence Design Systems, Inc

Why AC power analysis?


- Switching circuit requires current to charge the load.
 VRM needs to supply this power
- VRM is unable to respond if output impedance exceeds target impedance.


- Introduces switching noise: $Z_t = \frac{Vdd * ripple}{50\% * L...}$


- Impedance should be smaller than Z_t at broad frequency range to lower switching noise.
- AC analysis calculates PDN impedance

10 © 2017 Cadence Design Systems, Inc

Low Loop Low Loop Inductance cadence Inductance

Design Decisions depending on PDN Analysis

- To determine proper metal thickness for power/gnd planes
- To find out
 - If and where to add additional via or power/gnd shape to ease the overheat
 - Whether to add additional plane layers needed in the board stackup
 - Power dissipation and temperature profiles in PKG/PCB
 - If and where to add sense line compensation for VRM
- Decoupling capacitors
 - Quantity, type and location

Prodrive Technologies

Bram Bruekers

Since 2003 working at Prodrive Technologies Analogue / Mixed signal hardware design PCB design

- 15+ years experience
- High current & voltage
- -Low noise

PCB tooling support & maintenance

cādence°

Prodrive Technologies

- One of the fastest growing privately owned technology companies in Europe
- HQ located in Son, Netherlands
- International located: Germany, USA, Israel, China
- Design of electronics, software and mechanics
- Manufacturing
- Core competences
 - High end computing
 - Power conversion
 - Motion & mechatronics
 - Industrial automation
 - Vision & sensing
 - loT

- Industries of main interest:
 - Industrial
 - Automotive
- Infra & energy
 - Medical

MRI Gradient Amplifier

event

cādence°

- 3-axes gradient amplifier cabinet
- 2100V / ±1200A Patented end stage
- Maximum 45kW continuous output power for three axes
- · Integrated high precision current sensors
- High reliability of >30,000 hours
- Lifetime: >10 years
- Multiple FRUs (Field Replaceable Units)

Mains Input Board

Inrush current limiter Power distribution • Integrated current measurements Designed for 3x 130A continuous INPUT OUTPUT 3 Phase AC 3 Phase AC

Design Choices

· What type of interconnection to use?

	Pro	Con
Cable	Easy / flexible routing	Assembly issues, many connections Where to place electronic circuits?
Bus-bar	current carrying capability	Difficult to 'route' through complex product Where to place electronic circuits?
PCB	Electronic circuits possible Ease of assembly	Complex design Heating

cādence°

Design Choices

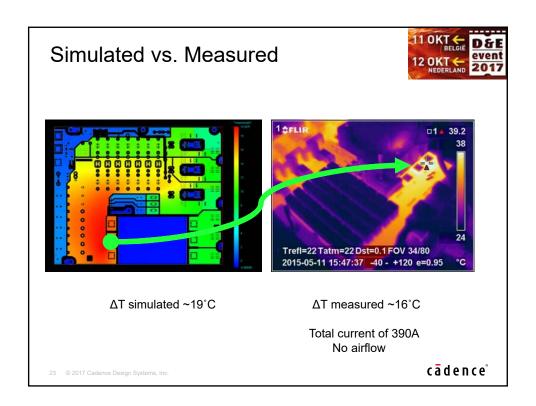
PCB

- Design complexity
 - How many layers?
 - Copper weight?
 - Total Thickness -> Limited by components!
- Thick copper
 - Lower temperature? Not necessarily!
 - Higher costs + leadtime PCB FAB house
 - PCB Assembly issues

So, thicker is not always better

Simulation to make design choices

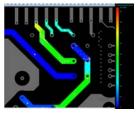
- PCB heating most critical factor for this circuit
 - Absolute voltage drop not interesting
- Initial stackup : 6 layers 4oz (~140µm) copper
 - Creating hotspots due to stackup, routing and plane cuts.
 - Long leadtime for raw material
 - UL certification for 140µm+ copper in several PCB FABs not available
- Final stackup : 12x 2oz (~70µm) copper
 - Hotspots are more spread because of overlapping planes
 - 'Standard' available materials = short lead time!

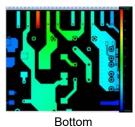

cādence°

Comparison 2 PCB stack-ups

	Initial	Final design
# Layers	6	12
Copper weight	4oz	2oz
Material availability	-	+++
PCB costs	€€€€€	€€€
# PCB Fabs	-	+++

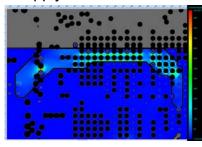
Other practical applications

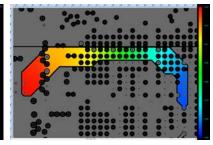

- Feasibility check
- Debugging


Feasibility

- Question from a customer:
 - "Can the routing cope with a current of 7A?"
- Microcontroller board
 - Dense design, not much place for wide traces
- Used PowerDC to simulate the current through the specific part of the PCB
 - Result: Yes, routing can handle the specified current. Hotspot is caused by the connector.

Current density


Top ΔT simulated ~14°C

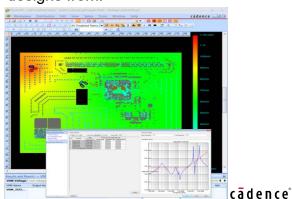

cādence°

Debugging

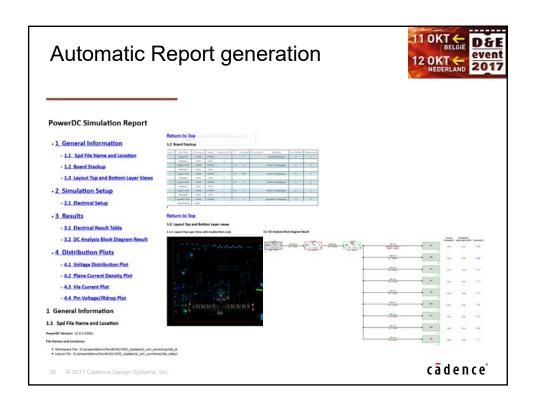
- Issue with core supply of microcontroller
 - Stability issues during qualification
- IR drop simulation to simulate the voltage drop from the supply to the microcontroller

- Last minute PCB change, extra VIAs were added
- ΔV is about 65mV → only ~5mV supply voltage margin!

Why we use PowerDC


- Initially usage:
 - High-current designs IPC2221B / IPC2152 not possible to use on complex boards
 - Temperature rise of a PCB
- Now also for power distribution and voltage drop simulations

cādence°


Integration with PCB tools

- Direct integration with OrCAD/Cadence PCB Editor
 - Use PI constraints during layout
 - DRC markers
- Capable to analyze designs from:
 - Altium
 - Mentor Graphics
 - ODB++
 - Zuken

