
Gerard Fianen

INDES Integrated Development Solutions BV

Unit Testen en embedded software
Fout injectie en Software varianten

Ontwikkelingen in Unit Test & Code Coverage
- Software varianten test
- Fout Injectie

Ontwikkelingen in formele Statische Analyse
- Worst Case Stack usage analysis
- Worst Case Timing Analysis
- Proven correct C-Code

Agenda

Unit test
is a level of software testing where individual units/ components of a software are tested. The purpose is to
validate that each unit of the software performs as designed. A unit is the smallest testable part of any software.
It usually has one or a few inputs and usually a single output.

Code Coverage

To determine what proportion of your project’s code is actually being tested by unit tests or integration

tests, you can use the code coverage. There are different kinds of coverage measurements :

• Statement Coverage (C0)

• Branch Coverage (C1)

• Decision Coverage (DC)

• Modified Condition / Decision Coverage (MC/DC)

• Multiple Condition Coverage (MCC)

• Entry Point Coverage (EPC)

• Function Coverage (FC)

Begrippen

Software varianten (Software Product Line)

There are various possibilities to create software variants
(e.g. C/C++ source code):

• Enabling/disabling of code parts by defines
• Generating code variants with tools (e.g. out of MATLAB)
• Copying, renaming, and changing the source file
• Executing identical sources on different hardware platforms

Bron : TU Braunschweig

Example :

Variant specific code could be added up to the
measured value

Programming error :
Missing of an addition operator in line 16

Error could remain undiscovered if
the commonly used code in line 19-23
remains untested in the variant.

Het doel: Test coverage

+

Implementation Example

Test cases for the variant “passenger car“

Rules for test case inheritance

Inheritance operations :
• Change of inherited test data
• Deleting/hiding of inherited test cases
• Adding additional test cases

Variable values statuses can be result of :
• Value was inherited
• Value was inherited and overwritten
• Value was defined locally for this variant test

Testspecification variants

Color coding of inherited and overwritten values

Inherited values are
highlighted in blue

Overwritten values are
highlighted in purple

Fault injection

In regel 6 wordt in het geheugen geschreven.

In regel 7 wordt getest of inderdaad de goede waarde in

het geheugen staat.

Fault injection

Geen 100% Code-Coverage

Fault injection

Fault injection

Fault injections are created based on

unreached branches of the function

flow graph.

Fault injection

100% Coverage !

In regression testing, fault injections

are automatically placed in the

correct location in the source code

even after code changes.

Fault injection

Ontwikkelingen in (formele) Statische Analyse

Formele verificatie door toepassing van Abstact Interpretation

Scope:
- Binary code: worst-case stack usage , worst-case execution time
- Source code: violations of coding rules, run-time errors, data races

“Sound” tools
- Verification is correct and exhaustive. Never yield false negatives.

Toelichting : Abstract interpretation (hidden slide)

abstract interpretation is a theory of sound approximation of the semantics of computer programs, based on
monotonic functions over ordered sets, especially lattices. It can be viewed as a partial execution of a computer
program which gains information about its semantics (e.g., control-flow, data-flow) without performing all the
calculations.

Its main concrete application is formal static analysis, the automatic extraction of information about the possible
executions of computer programs; such analyses have two main usages:

- inside compilers, to analyse programs to decide whether certain optimizations or transformations are applicable;

- for debugging or even the certification of programs against classes of bugs.

Sound tools guarantee that the verification they perform is correct and exhaustive. They can never yield false
negatives, but by undecidability may produce false alarms (or false positive) signaling a potential error with no
instance during any execution (because the static analysis is not precise enough to eliminate the potential error).

More: https://en.wikipedia.org/wiki/Abstract_interpretation

https://en.wikipedia.org/wiki/Abstract_interpretation

Worst-Case Stack Height Analysis

End of reserved

stack space

Start of

reserved stack

space

Stack frame of

current function

Usable stack

space

SP /Stack

Pointer

Stack space has to be reserved at configuration time =>
maximal stack usage has to be known in advance.

A traditional approach: pollution checks
Fill the stack area with a pattern (0xAAAA)
Let the system run for a long time
Monitor the maximum stack usage so far

Error-prone and expensive!
Typical stack usage of a task can be very different from maximum stack usage.

Dynamic testing typically cannot guarantee that the worst case stack usage has

been observed.

StackAnalyzer is an Abstract Interpretation based static

analyzer which calculates safe and precise upper bounds of

the maximal stack usage of the tasks in the system.

It can prove the absence of

stack overflows:

• on binary code

• without code modification

• taking into account loops

and recursions

• taking into account inline assembly

and library function calls

25

StackAnalyzer: Static Stack Usage Analysis

StackAnalyzer computes safe upper bounds of the stack usage of the tasks in a program for all inputs

Static program analysis based on Abstract Interpretation

26

instruction "_main" + 1 computed

calls "_fooA", "_fooB", "_fooC";

routine "_fib" incarnates max 5;

Function pointers, recursion depths, …

Entry Points

❑ Stack Usage
❑ Visualization
❑ Documentation

Executable (elf,coff,…)

StackAnalyzer

Computing the Worst-Case Stack Height

Worst-Case Timing Analysis

Entry Point

clock 10200 kHz ;

loop "_codebook" + 1 loop exactly 16 end;

recursion "_fac" max 6;

snippet "printf" is not analyzed and takes max 333 cycles;

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;

area from 0x20 to 0x497 is readonly;

Specifications (*.ais) Worst Case Execution Time
+ Visualization, Reporting

void Task (void) {

variable++;

function();

next++:

if (next)

do this;

terminate()

}

Application Code

Executable
(*.elf /*.out)

Compiler
Linker

Worst Case Execution Time (WCET)
estimate based on local tracing information

+ Trace Coverage report
+ Time Variance report over all traces
+ Visualization, Reporting

4
Program-Flow Traces

Toelichting : Worst-Case Timing Analysis

• Global static program analysis by Abstract Interpretation (sound):
microarchitecture analysis (caches, pipelines, …) + value analysis

• Integer linear programming for path analysis

• Safe and precise bounds on the worst-case execution time

Meer over de tools
in deze presentative :

www.indes.com info@indes.com Tel : 0345 – 545.535

Tessy Unit test & code Coverage :
www.razorcat.com
https://www.razorcat.com/en/product-tessy.html

https://www.absint.com/products.htm

http://www.razorcat.com/
https://www.razorcat.com/en/product-tessy.html
https://www.absint.com/products.htm

INDES –
Integrated Development Solutions BV

Cross Compilers, Debuggers, IDE
RTOS, Middelware, Protocol stacks, GUI, Database

Debug & Trace probes, Emulators
Real-Time Trace, RTOS-Event Trace

Static Analysis, Timing Analysis, Stack Analysis
Unit Test, Code Coverage

System-level Test

PoE conformance test, Ethernet-PHY test

Bezoek ons op stand 27

www.indes.com info@indes.com Tel : 0345 – 545.535

