riscure

Who needs IoT security?

Marc Witteman

November 7, 2018 D&E event

Outline

- 1. What is IoT?
- 2. Is IoT security important?
- 3. Case study
- 4. What's next?

What's new in internet?

Traditional internet

- connects people with machines
- shares data that people create

IoT (Internet of Things)

- connects machines to machines
- shares data that machines create

What is the Internet of Things?

Source: Vivante

IoT example

Security is all about the chip

SOFTWARE COMPLEXITY IN AUTOMOTIVE

Lines of Code

Outline

- What is IoT?
- 2. Is IoT security important?
- 3. Case study
- 4. What's next?

Is IoT security important?

Remote car hijack

Smart lock bypass

Identity theft

CROSSING AN INTERSECTION IN 2028

How does Information Security work?

What to protect?

- Confidentiality
- Integrity
- Availability

How to protect?

Cryptography

Access control

Primary targets
For attackers

Are IoT devices sensitive to attacks?

 Fast growing market with new unexperienced entrants

 Operate in an uncontrolled (hostile) environment

Pressure on time-to-market and cost

How does an attacker get access?

riscure

Restricted

Find the key

Break the lock

Outline

- What is IoT?
- 2. Is IoT security important?
- 3. Case study
- 4. What's next?

Case study: IoT camera

- IoT camera bought from China
- 17 euros
- Many features
 - Wi-Fi connection
 - 2-way audio
 - HD image
 - Motors for rotating the camera
 - IR light for night imaging
 - Logs data to microSD card
 - Phone app for Android & iOS

•

What can go wrong?

Let's look inside...

Let's open the camera and identify interfaces

Inspecting the PCB...

Let's open the camera

Google + a bit of RE:

- Ingenic T10 SoC
 - Heart of the system
- MediaTek MT7601 SoM
 - Wifi comms
- DoSilicon FM25Q64A
 - Storage for OS (linux)
- Atmel AT24C02 I2C flash
 - Storing camera model
 - MAC address
- Transistor array
 - Powering the motors

We found a way in... U-Boot 2013.07 (Sep 22 2016 - 21:41:56)

- Most embedded systems still have a UART
- Of course, this camera too


```
Board: ISVP (Ingenic XBurst T10 SoC)
DRAM: 64 MiB
Top of RAM usable for U-Boot at: 84000000
Reserving 423k for U-Boot at: 83f94000
Reserving 32784k for malloc() at: 81f90000
Reserving 32 Bytes for Board Info at: 81f8ffe0
Reserving 124 Bytes for Global Data at: 81f8ff64
Reserving 128k for boot params() at: 81f6ff64
Stack Pointer at: 81f6ff48
Now running in RAM - U-Boot at: 83f94000
    msc: 0
MMC:
the manufacturer f8
SF: Detected FM25Q64
     serial
In:
      serial
Out:
Err: serial
Net: CPM MACCDR(54) = a0000017
Jz4775-9161
Hit any key to stop autoboot: 0
the manufacturer f8
SF: Detected FM25Q64
```

Oops??!!

This camera prints all sorts of debug information through serial port

 Ports of the camera, configuration files...

- Users of camera
 - And passwords ☺

- Wifi configuration
 - SSID + password

SSID + passwor

not find mac===Get wifi ap mac:=== ifconfiq: wlan0: error fetching interface information: Device not found not find mac===Get wifi mac:=== ===NetWorkSetMac===FC:cf:ad:dc:19:ce sscanf return 6 0000 APSSID APCAM FFFFFFDC19FFFFFFCE 0000 ===Get wifi ap mac:E0:B9:4D:8F:E9:A3=== ===Get wifi mac:E0:B9:4D:8F:E9:A3=== ==NetWorkSetMac===FC:cf:ad:dc:19:ce SysParamRead system.ini RTSP Port 10554 ONVIF Port 10080 SysLanguageRead language.ini Now Language is English ! /usr/bin/unzip -o /system/www/audio en.zip -d /tmp kernelversion = Thu Sep 22 09:11:41 CST 2016 user0: pwd: user1:user pwd:user user2:admin pwd:admin SysDefaultVoiceInit : 2 sysversion:E10.71.1.16.55E SvsParamRead factorv.ini ssid:linksys wifiauth 4 wifikey:12345678 killall: wpa supplicant: no process killed ===wifi is run wpa supplicant -B -Dwext -iwlan0 -c /tmp/wpa supplicant.conf=== ===NetWorkEthInitMac===FC:cf:ad:dc:19:ce ifconfig: SIOCGIFFLAGS: No such device ifconfig: SIOCSIFHWADDR: No such device ifconfig: SIOCGIFFLAGS: No such device ======mac=FC:cf:ad:dc:19:ce=======

ifconfig: wlan0: error fetching interface information: Device not found

Oops??!!

This camera prints all sorts of debug information through serial port

 Even the configuration of the SSID from youtube videos ☺

```
fiCheckUsbError===0
         -----recognize start
                 -recognize invalid data, errorCode:100
                 recognize start
ssid:UPCNEDERLAND, pwd:01061979
=====wifi is config ok=====
szFileName = /tmp/config-start.wav
GpioAduioOut 1
ssid:UPCNEDERLAND wifiauth 4 wifikey:01061979 killall: wpa_supplicant: no process killed
NetWorkSetInterface 0
```

Can we also get access to the OS?

Camera has a root password for Linux ©
But all cameras have the same root password ©
This thing has U-boot: can we still boot?

- Stop u-boot procedure (hit any key), and print bootargs using printenv
- Then append to the bootargs init=/bin/sh: \$ setenv bootargs 'console=ttyS1,115200n8 mem=39M@0x0 ispmem=5M@0x2700000 rmem=20M@0x2c00000 init=/linuxrc rootfstype=squashfs rw root=/dev/mtdblock2 rw mtdparts=jz_sfc:256k(boot),2176k(kernel), 3584k(rootfs),2176k(system) init=/bin/sh'
- \$ boot

And you boot without password ⊗

Can we recover the password?

Reverse engineering on several cameras show they all have same configuration

Interesting files:

- /etc/password
 root:\$1\$ybdHbPDn\$ii9aEIFNiolBbM9QxW9mr0:0:0::/root:/bin/sh
- /etc/shadow does not exist → hash above is a MD5 hash → collision fun

Use any password cracking program to crack the salt\$hash string (or google the string) ybdHbPDn\$ii9aEIFNio1BbM9QxW9mr0 = md5("ybdHbPDn" + "hslwificam")

We have the root access password on all cameras

Can we get access to other services?

We have local root: let's login and see what is the camera exposing to internet... **Telnetd is running: default backdoor on all cameras** 😕

But wait... there is a RTSP port in 10554 published by the camera... What happens if you try to access it directly?

rstp://ip.of.the.cam:10554/tcp/av0_0

User: admin, no pass == access camera stream ⊗⊗⊗

And in port 81: http / ONVIF interface (you can even move the camera) ☺☺☺

We can listen in to video broadcasted by all cameras of this type

So, where are the cameras?

Can we go global? Let's search for http header strings in Shodan.io

- Loads of cameras connected
- Thousands of houses offer free spying...

Attack recap

HW attack:
Serial port reveals root
password

Found telnet: users & config exposed

Access remotely video stream & all config

Camera security fully bypassed & backdoor for free

- These cameras are used typically as baby monitors: privacy violation
- Linux system: can be used for illicit activities, e.g. bitcoin miners
- IoT botnet Mirai almost brought down DNS in parts of the world

Lessons learned

Takeaway 1: bad security practices + hardware attack == scalability

- Use hardened OS, close ports, protect services
- Need unique passwords
- Run firewalls

Takeaway 2: flawed IoT devices == stepping stone for bigger attacks

It's not just about the device itself, the eco system is at risk

Takeaway 3: proper security is not free

 Independent review and testing really helps exposing weaknesses and improve security

Outline

- What is IoT?
- 2. Is IoT security important?
- 3. Case study
- 4. What's next?

When should we fix our bugs?

- Cost of fixing goes rapidly up
- Prevention is better than cure

EU CYBERSECURITY ACT

- European cybersecurity certification
- Certificates valid in all EU countries
- Certification will be voluntary, unless ...
- Verify data confidentiality and integrity
- Assurance levels:
 - Basic → documentation review
 - Substantial → functional security testing
 - High \rightarrow penetration testing

Your products may need security certification by 2020

- Because EU mandates it, or Customers demand it, or
- Competitors get it Are you ready?

How to make a secure product?

- Training increases security awareness and brings security capabilities
- Secure development is about secure process, design, and coding
- Certification involves testing and provides assurance that the product is secure
- Maintenance keeps an evolving product secure

Riscure support for making secure products

Training & Coaching

Tools for code analysis & security penetration testing

Evaluation & Certification

Takeaways

- IoT will be everywhere
- Software is getting huge and hard to verify
- Security no longer a nice-to-have
- Certification needs secure development
- Solutions exist to make better products

Riscure B.V.

Frontier Building, Delftechpark 49 2628 XJ Delft The Netherlands

Phone: +31 15 251 40 90

www.riscure.com

Riscure North America

550 Kearny St., Suite 330 San Francisco, CA 94108 USA Phone: +1 650 646 99 79

inforequest@riscure.com

riscure

Riscure China

Room 2030-31, No. 989, Changle Road, Shanghai 200031

China

Phone: +86 21 5117 5435 inforcn@riscure.com

Challenge your security

Visit us at the exhibition Learn about security training & tooling