
Mike Looijmans & Dirk van den Heuvel

Topic Embedded Systems

From Matlab to FPGA in manageable steps, 
a true story in double precision



Who are we?

“We make the world a little better, smarter and 
healthier every day”

Real Embedded company; 175 employees
125+ embedded software developers
25+ FPGA designers
10+ board designers

Founded in 1996, privately owned

Based in the Netherlands; Europe

4 Business Units:
Consultancy: The Netherlands
Turn Key Projects: Europe and North America
Embedded Product Development and Sales: Worldwide
Healthcare Solutions: Worldwide

2



Delirium measurement

Mission: safe and accurate delirium monitoring in routine 
hospital care (delirium “thermometer”)

Delirium (acute brain failure) affects over 3 million hospitalized 
patients in Europe every year

It is a potentially fatal medical emergency that regularly leads 
to 

long-term cognitive impairment (dementia) 

longer hospital admission
higher healthcare costs

Delirium equals diabetes in social costs, ~ €173 billion

The longer a delirium episode lasts, the more damage is done.

To date, delirium is detected too little and too late
Subjective and ineffective methods

http://www.prolira.com

https://www.youtube.com/watch?v=m8HQlmVjHTM

http://www.prolira.com/
https://www.youtube.com/watch?v=m8HQlmVjHTM


Prolira’s DeltaScan patch and monitor

EEG-based electrode disposable patch

Hardware/software brain activity analyzer

Algorithmic recognition of delirium and 
treatment

Patented

Originally Matlab modelled

Transition to , translated to Octave

STEP 1 : Manual translation to C++

Streaming data processing model

More performance enhancement control

4



What did Topic do?

Designed the electronics

Miami System-on-Modules as core 
processing platform

Developed a V1 and V2 prototype
Sensor cable interface

Display and touch interface

Battery interface

Linux based BSP configuration and
driver development

Application development support

FPGA accelerator design to get the 
application real-time performing

Helped the customer with CE approval 
and device certification

5



No More Moore’s law

http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.gotw.ca/publications/concurrency-ddj.htm


Execution acceleration: Wavelet transform

Profiling: determine performance bottleneck
Wavelet transform (WT) and inverse (iWT) 

2 msec processing window allowed

1 wavelet transform takes ~3ms

STEP 2 : Evaluate acceleration options
Double precision floating point to fixed point = 
algorithm stability issues

NEON/FPU engine = not sufficient acceleration

FPGA = double precision floating point???

Implementation:
C function isolation

Code optimization

Vivado HLS implementation

7



Programming model

8

Shared DDR3 memory bank

ADCI/O

N
O

C

DMA

CPU

WT (5x) iWT

WT

other FPGA logic

Xilinx Zynq 7030

FPGA fabricARM Cortex A9 CPU

512 SPS, 32 bits signed



STEP 3 : Understanding the problem

1-D Discrete Wavelet Transform
4096 samples (double)

Apply high-pass and low-pass filter (8-point FIR)

Take only “even” results, 2048 samples each

The high-pass filter outcome is the result

Repeat the process for the low-pass filter outcome

Results in 2 sets of 1024 samples

Repeat until only 1 sample remains

How well are your mathematical skills?
How can we get around this?



int pl = (int) tp.size();

while (L > pl) {

tp.insert(tp.end(), t.begin(), t.end());

pl = (int) tp.size();

}

t.insert(t.begin(), tp.begin() + pl - L + 1, tp.begin() +
pl);

t.insert(t.end(), tp.begin(), tp.begin() + L - 1);

DVec yl = conv(t, h); // lowpass filtering

DVec yh = conv(t, g); // highpass filtering

STEP 4: Make it synthesizable

Use of std::vector<>

Use C arrays instead

Moving data blocks around

Write data into output array on the correct location

Inefficient code

Don't calculate what you don't need

Too flexible

Fixed size input and output

Constant filter coefficients



STEP 5 : Speed it up

Code describes a “linear” flow

But a lot of operations can run in parallel

Tools can do a lot, but need to “guess” your intentions

Move code around (inline) to make intentions clear

Reduce dependencies, usually by inserting “memory”



STEP 6 : Test and Evaluate



Final results

Original C++ Improved C++ FPGA

Number of cores 2 2

Time per step (μs) 8000 2000 363

Power consumption (mW) 400 mW 200 mW

Energy per step (mJ) 3200 800 72.6

Notes:

● Placed two instances in the FPGA, hence “2” cores

● Power consumption measured at the 1V “core” power supply line

● The (improved) CPU implementation uses 11x more power



Interesting facts

~180 million double precision floating
point MULT-ACC operations / second

Per wavelet data set 65536 MAC 
operations

5 wavelet transforms concurrently

1 WT uses ~ 15% FPGA resources

Acceleration from ~2ms to ~180us per 
WT

Code manipulation gives best C-2-HDL 
optimizations, not just the directives

Maintaining double precision floating point 
on FPGA (!!!)

Data transfer bandwidth from CPU to FPGA 
becomes a dominating factor

Remarkably fast implementation cycle by a 
non-FPGA embedded programmer

4 days to make C++ code suitable for synthesis

1 day of optimizing for synthesis to reach
performance goal

Have a look what a WT IP license costs …

Starting point:standard mathematical C-
models

Straight from the Internet, including test benches

14



Contact

Materiaalweg 4, 5681 RJ BEST, the Netherlands

+31 499 336979

www.topic.nl

dirk.van.den.heuvel@topic.nl


