

USB 3.x – a connector for multiple applications

Würth Elektronik Remco van de Griendt E-mail: <u>remco.vandegriendt@weonline.com</u> Tel: +31 6 109 84 436

Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

1

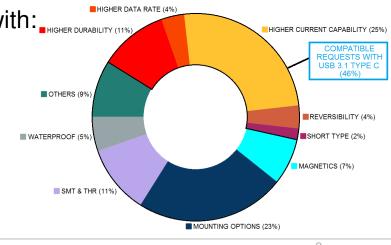
Table of Content

- Why Type USB 3.1 & Type C
- History of USB and Evolution
- Electrical Performance
- Mechanical Performance
- RF Behaviour
- Conclusion

Why Type USB 3.1 & Type C Market trends for USB (3.1)

- Annual shipment of USB sticks could reach 556 kk units in 2020
- US Biggest market
- +8% growth is expected for Asia / Pacific area

Power supply:


USB connectors are more and more often used as power suppliers:

- Customers are asking for high current connectors (1.8A / 2.1A & 3A)
- Smartphones, tablets, navigation systems are always requesting more & more power and need to be charged faster

Survey on 90 WE customers in America:

USB 3.1 Type C fits with customers' expectations with:

- Higher durability
- Higher data rate
- Higher current capability (Power supply)
- Reversibility feature
- Short Type (for integrated applications)

Sources: http://www.strategyr.com

A little bit of history – ...to USB 3.1

Year/Version USB 2.0 – 2000 USB 3.0 – 2008 USB 3.1 - 2013 Α Β Mini Micro С 480 Mbps 5000 Mbps 10000 Mbps Data rate 500mA / 5V 900mA / 5V 5A / 20V Power

Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

4

Specification, Requirements & Performances *Electrical*

- Contact resistance
 - V_{BUS} & GND Pins : $30m\Omega$ max
 - Other Pins: $50m\Omega$ max
 - $\Delta_{\text{CONTACT RESISTANCE}}$: 10m Ω max after mating cycles
- > Insulation resistance > $100M\Omega$
- > Dielectric Withstanding Voltage > $100M\Omega$
- Contact Current & Voltage rating:

Туре	Α		В		Micro B		С			
	Power Pins	Other Pins	Power Pins	Other Pins	Power Pins	Other Pins	Power Pins		Other Pins	
Pin Number	1 & 4	-	1 & 4	-	1 & 5	-	A1,A4,A9 & A12 B1,B4,B9 & B12	A5 & B5	-	
Current	1.8 A	0.25 A	1.8 A	0.25 A	1.8 A	0.25 A	1.5 / 5 A	1.25 A	0.25 A	
Voltage	5 V									

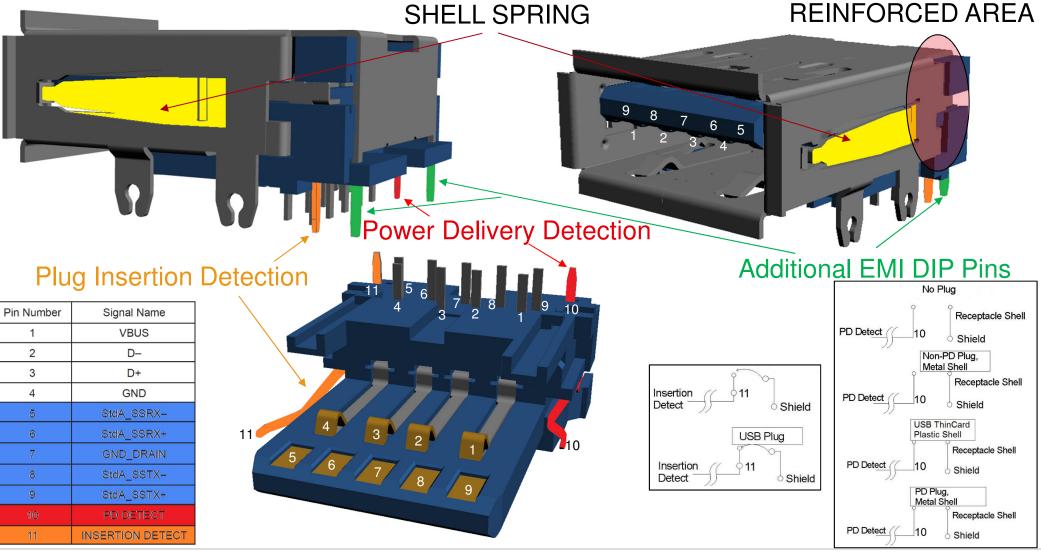
Specification, Requirements & Performances *Mechanical*

Durability – Mating cycles	S		Α		В		Micro E	3 C	
	Mating cycles		1500 or 5000				10000		
	Speed		200 cycles / hour						
Insertion force			Α		B	Mic	ro B	С	
l.	Insertion force	< 3	35 N	< 3	35 N	< 3	35 N	5 N to 8 N	J
	Speed		12.5 mm / m		min				

Extraction force (retention)

	Α	В	Micro B	С			
Standard mating cycles	1500	1500	10000	10000			
Before mating cycles	> 10 N	> 10 N	10 N < Force < 25 N	8 N < Force < 20 N			
After 1000 cycles	-	-	-	6 N < Force < 20 N			
At max. cycles	> 8 N > 8 N		8 N < Force < 25 N	6 N < Force < 20 N			
Speed	12.5 mm / min						

Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

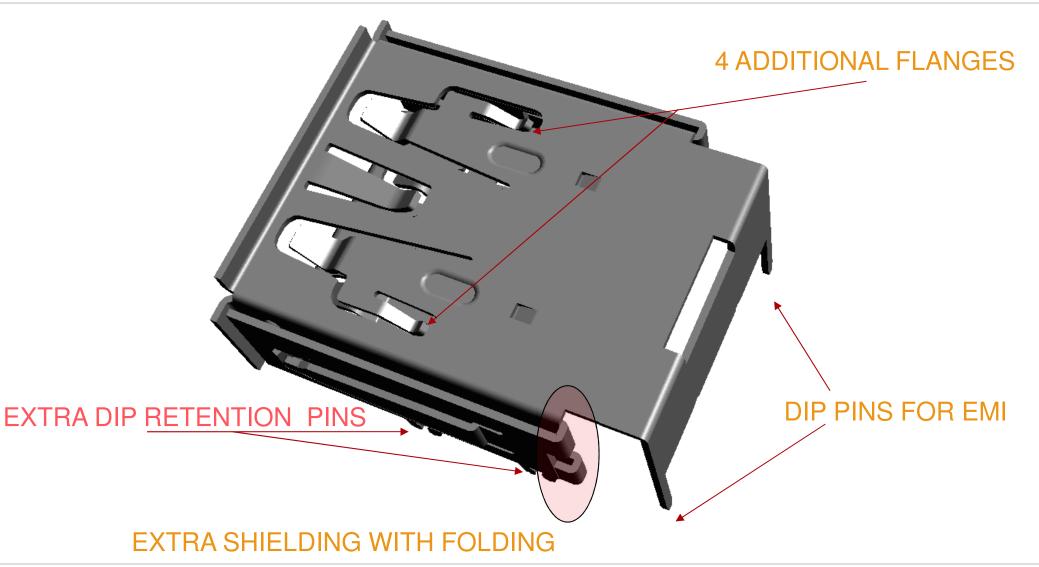

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

NEDERLAND

7 NOV

8 NOV

USB 3.1 Product Overview *PD Type A Receptacle – 632 121 300 001*

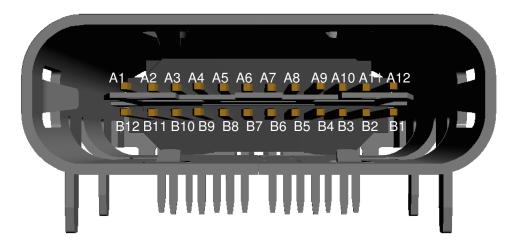

Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us

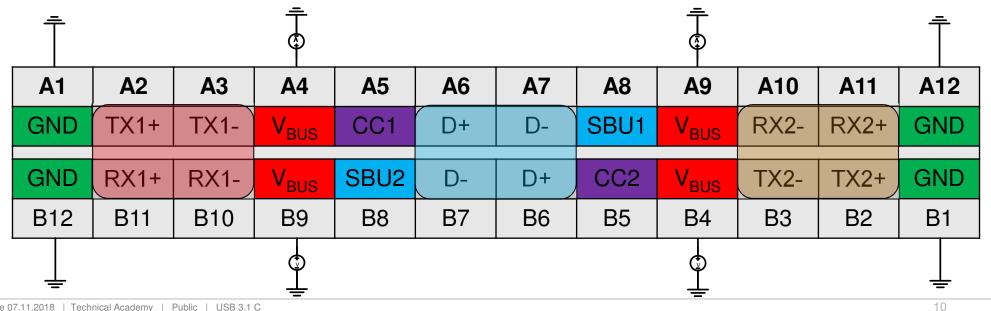
7 NO)

8 NO

USB 3.1 Product Overview PD Type A Receptacle – 632 121 300 001

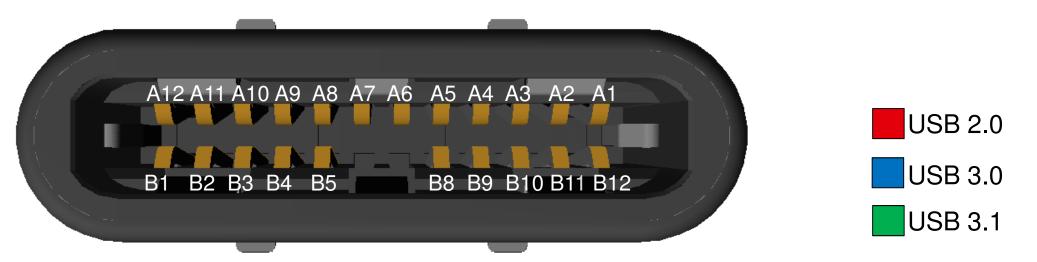


PD Type A Receptacle – Conclusion


- Supports Power Delivery with:
 - 5 A
 - 5V / 12V / 20 V
- Improved EMI/RFI Performances of at least 10 dB
 - 4 Additional flanges
 - Improved shielding
 - 2 Additional DIP pins for Ground
- Compatibility with USB 2.0 & USB 3.0
- 5 000 Mating cycles

Type C Receptacles – 632 723 x00 011

- GND : All pins (4) are connected together
- All pins (4) are connected together V_{BUS}:
- USB 2.0 Data pair **D** :
- **TX**: 2 transmission pairs
- RX: 2 reception pairs
- **CC**: Configuration Channel : Detection & Power Management + HTD Management
- SBU: Side Band use : Alternate modes (other standards



Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

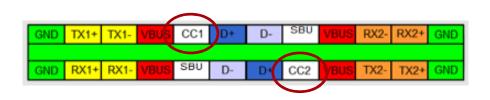
Type C Plug - 632 712 000 011

A12	A11	A10	A9	A 8	A 7	A6	A 5	A 4	A 3	A2	A 1
GND	RX2+	RX2-	V _{BUS}	SBU1	D+	D-	CC1	V _{BUS}	TX1-	TX1+	GND
GND	TX2+	TX2-	Vello	CC2			SBU2	Vello	BX1-	RX1+	GND
B1	B2		B 4	B5			B8	B 9			

Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

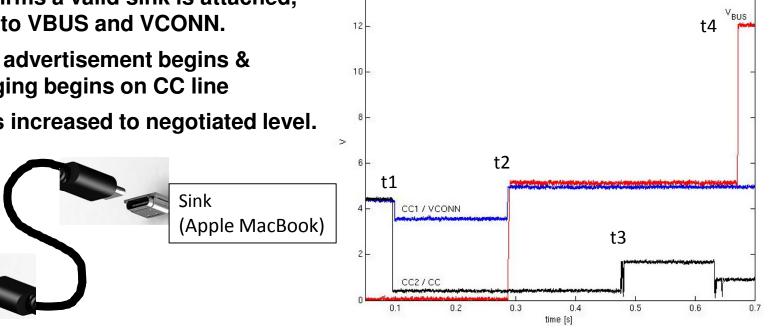
Configuration Channel Providing the flexibility of Type-C



Functionally the Configuration Channel (CC) is used to serve the following purposes:

- Detect connect of USB ports,
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish DFP (sink) and UFP (source) roles between two connected ports
- Discover and configure power: USB Type-C current modes or **USB** Power Delivery
- Discovery and configuration of optional Alternate and Accessory modes

Detect valid connection

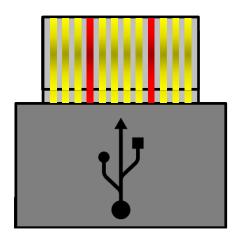

Typical CC flow for DFP to UFP configuration:

Configure as a DFP or UFP

Typical Behavior upon Attachment

- The CC2 / CC line shows the voltages on the configuration channel between the sink and a source that applies VCONN to the cable.
- t1: the cable is attached.
- t2: the source confirms a valid sink is attached. then applies 5V to VBUS and VCONN.
- t3: USB Type-C 3A advertisement begins & USB PD messaging begins on CC line
- t4: VBUS voltage is increased to negotiated level.

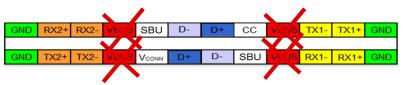
13

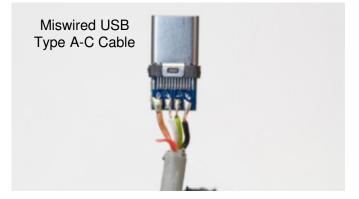

Date 07.11.2018 | Technical Academy | Public | USB 3.1 C

AC/DC Adaptor

(TPS25741 EVM)

Potential Failure: Noncompliant Cables





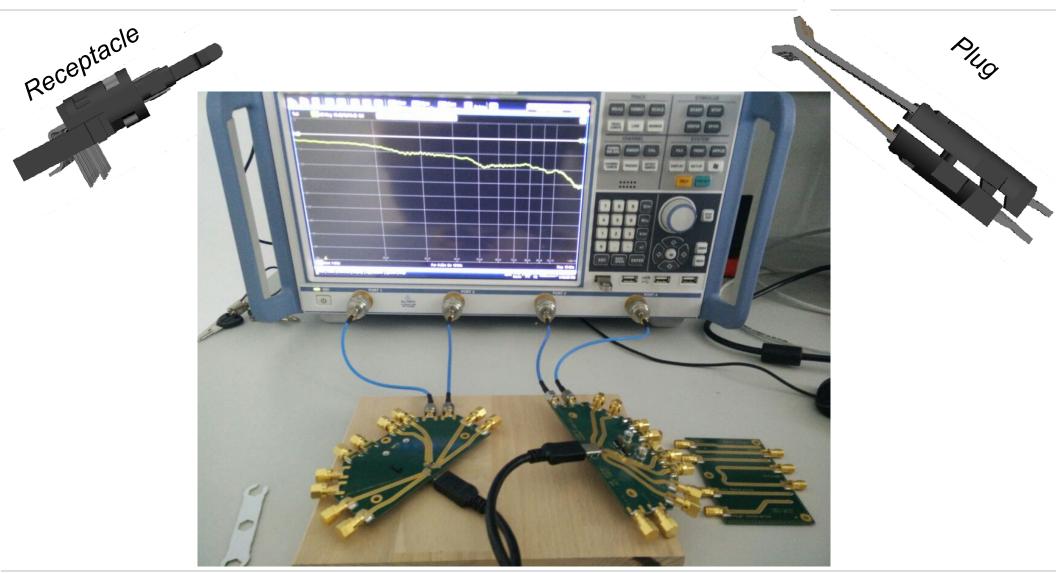
- Even if your system is not using USB PD (you are charging at 5V, 500mA), there are non-compliant cables that output 20V without PD negotiation
- If your system is not designed to handle 20V, then there would be a failure

•In a survey of USB Type-C cables available on Amazon, **28%** of cables were not compliant to USB-IF specification. (*Google Engineer Benson Leung: 20/71 cables out of specification*)

•Despite Amazon's ban there is still a risk of end user's purchasing non-compliant USB Type-C cables from cable manufacturers

BELGI

NEDERLAND


event

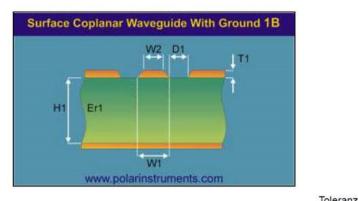
2018

7 NOV

8 NOV

Specification, Requirements & Performances *RF behavior*

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.


Specification, Requirements & Performances *RF behavior*

Minimum

Maximum

Polar Si8000 Controlled Impedance Quick Solver

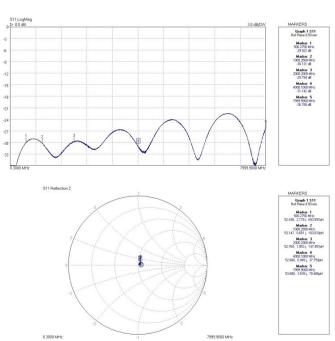
			Toleranz	Minimum	Maximum
Substrat 1 Dicke	H1	322,0000 +/-	0,0000	322,0000	322,0000
Substrat 1 Dielektrikum	Er1	4,6000 +/-	0,0000	4,6000	4,6000
Untere Leiterbreite	W1	450,0000 +/-	0,0000	450,0000	450,0000
Obere Leiterbreite	W2	420,0000 +/-	0,0000	420,0000	420,0000
Separation Massestreifen	D1	225,0000 +/-	0,0000	225,0000	225,0000
Leiterbahndicke	T1	50,0000 +/-	0,0000	50,0000	50,0000
5					
Impedanz	Zo	50,13		0,00	0,00
Laufzeit (ps/m)	D	5725,350		0,000	0,000
Induktivität (nH/m)	L	287,010		0,000	0,000
Kapazität (pF/m)	С	114,211		0,000	0,000

Calibration board

The mirostrip conductor has to be like Würth Elektronik suggests.

7 NO

8 NO


NEDERL

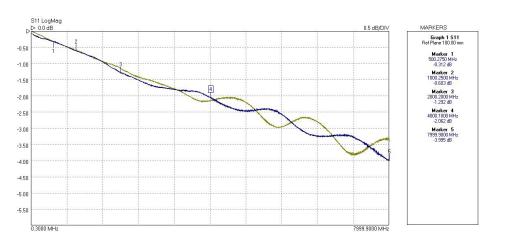
Specification, Requirements & Performances *RF behavior*

Calibrationboard

The adjustment of the line:

This corresponds to a line impedance of approximately 53 Ω .

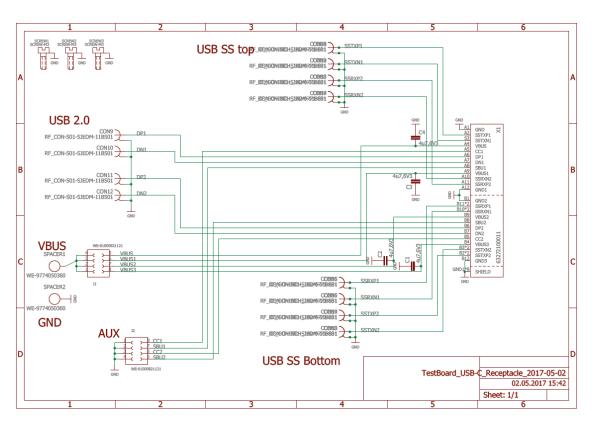
© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

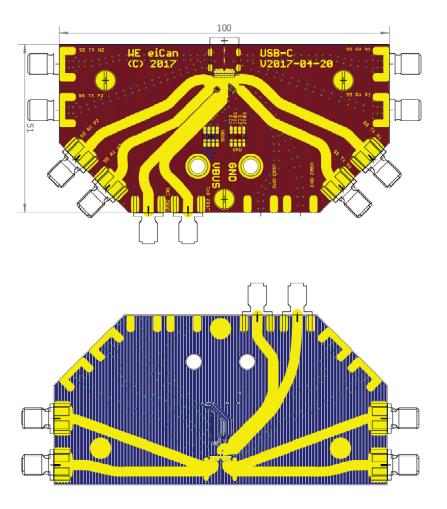

Specification, Requirements & Performances *RF behavior*

Calibrationboard

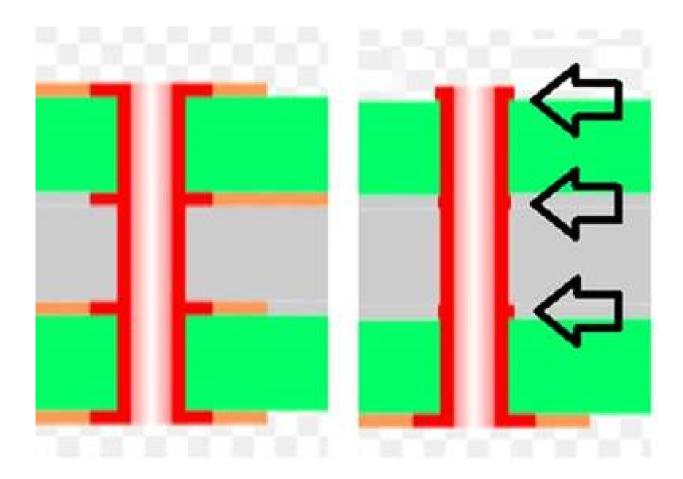
Insertion loss (refelction loss open / short)

As expected, open and short show a counter-image.

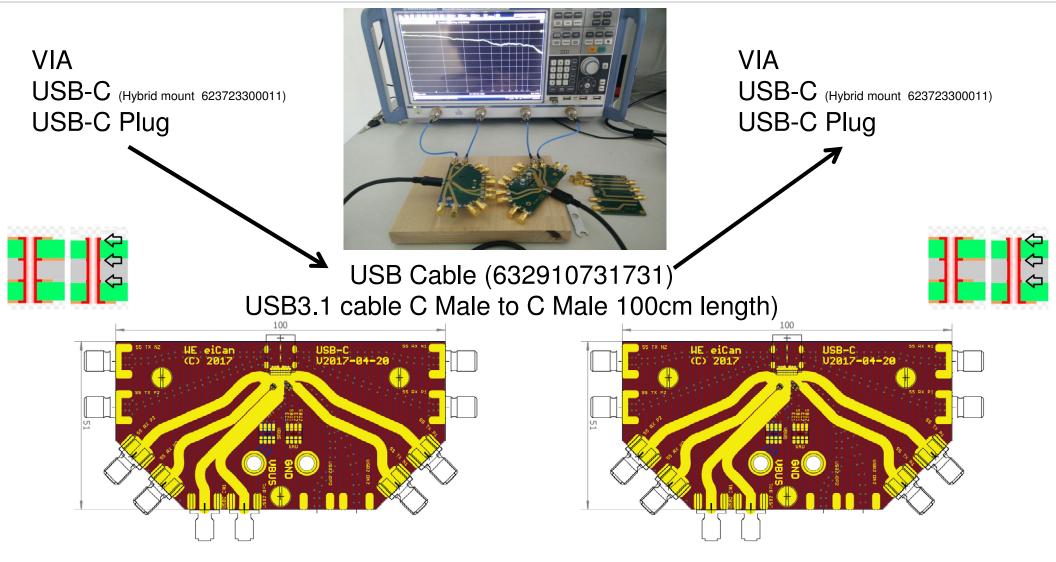

The real attenuation is half the value since the wave is attenuated on the return path.


1.5 dB / m at 0.5 GHz
3 dB / m at 1 GHz
6 dB / m at 2 GHz
10.5 dB / m at 4 GHz
19 dB / m at 8 GHz

Specification, Requirements & Performances RF behavior


Testboard

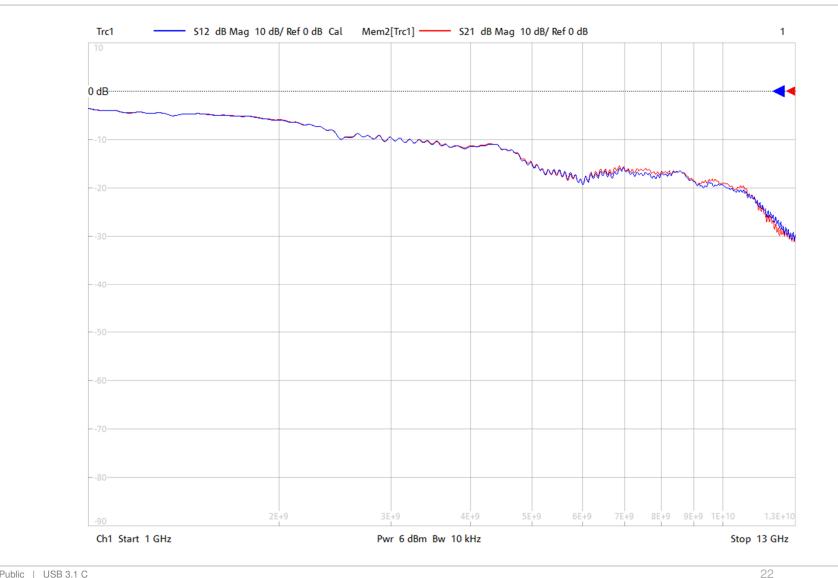
Specification, Requirements & Performances RF behavior


Testboard

VIA preperation:

Without rest ring is important to avoid capacitive and inductive effects between the layers.

Specification, Requirements & Performances RF behavior


BELGI

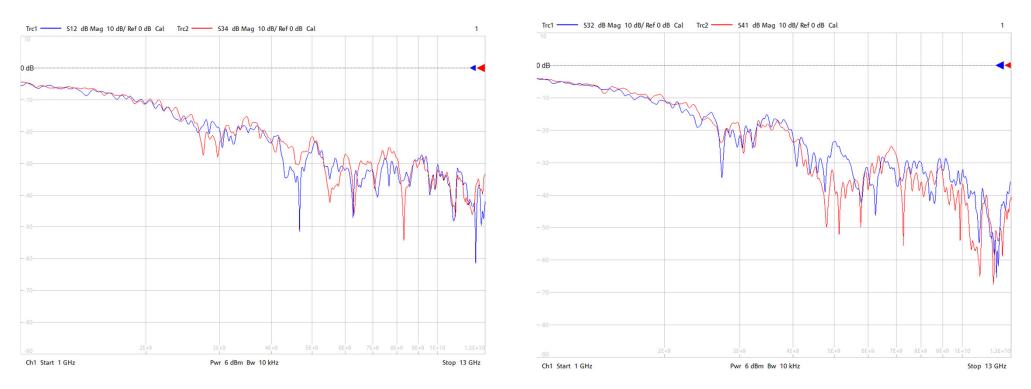
NEDERLAND

7 NOV

8 NO

Specification, Requirements & Performances RF behavior

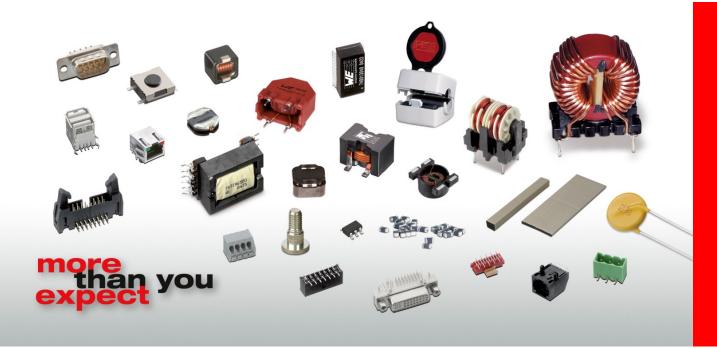
Attenuation:


7 NO\

8 N C

Specification, Requirements & Performances *RF behavior*

Attenuation D1 - D1: (S12 - S34)


Attenuation D2 – D2: (S32 - S41)

Pairs of datalines are nearly simmilar!

Thanks for your attention!

Würth Elektronik Remco van de Griendt E-mail: <u>remco.vandegriendt@weonline.com</u> Tel: +31 6 109 84 436