NOT "MAKE OR BUY" BUT "BUY AND MAKE"

WHY BETTER DESIGN WITH A SOM INSTEAD OF AN ONBOARD CPU

Holger Wußmann, Kontron Electronics on behalf of Telerex

DESIGN AUTOMATION & EMBEDDED SYSTEMS

THE MAGIC TRIANGLE OF PROJECT-/PRODUCTMANAGEMENT

MAIN GAOLS FOR A "GOOD" DEVELOPER OR PRODUCT MANAGER

- Reduce effort (time and money)
- Reduce risk
- Reduce complexity
- Be fast
- Be flexible an prepared for future requirements (New Displays, Connectivity, IoT, ...)
- Be focused on your USP, your companies know how

LOOKING LIKE TWINS: SOM+BASEBOARD VERSUS SINGLE BOARD COMPUTER

A SOM IN A NUTSHELL

- Complete Core Hardware and Software
- μP, GPU, Memory, Power supply, communication interfaces, GPIO
- Ready to use Software (SDK, Bootloader, OS, BSP, Drivers...)
- Independant of application
- Usable for the development of almost any product
- Combination of standardized SOM and application specific carrier board is a perfect platform for various embedded products

WHY DO WE HAVE SOMS NOWADAYS?

- ► Rapidly increasing requirements for small, powerful embedded systems (due to progressive digitization)
- ► First integration by semiconductor manufacturer in the form of SOCs
- Second integration by electronics manufacturer in the form of SOMs
- High number of connections on small space
- Critical Timings
- High quantity
- ► High quality

STRATEGIC ASPECTS

- Ready developed core module.
 - Shorter time to market
 - Less design risk due to well-tried solution
 - ► Long term available CPU module
 - ► Lifecylce management by manufacturer
- ► A CPU core optimized in every aspect
- Open X (Open Source, Open Hardware, Open Software)

SCHEMATIC DESIGN ASPECTS

- Complex CPU Core is a ready developed module.
 - Usable as easy as a microcontroller
 - CPU Setup / Multiplexing
 - Power supply (Power up/down sequencing)
 - Memory design (DDR3/DDR4...)
- Baseboard is application optimized
 - Exactly the required featureset, no overhead, design is BOM optimized
 - In-house standard connectors
 - ► It's your IP, it's your product

LAYOUT DESIGN ASPECTS

- _
- You can use a ready developed module.
 - Complex DDR3/DDR4 RAM design is done
 - ► Length adjustments, Signal delay adjustments, RAM-Timing
 - ► High frequency design needed, optional simulation needed
 - Space needed for CPU core is defined right from the beginning
 - EMC is already checked
 - decoupling capacitors are placed (in right number and right position)
 - Impedance controlled lines are designed
- Placement according to evironmental requirements

VAN DER VALK HOTEL

EINDHOVEN

TECHNOLOGICAL ASPECTS

- •
- Separation of normal and ultra-fine conductor structures (on baseboard and SOM)
- ► Separation of very small parts (0201) and bigger parts with thermal or mechanical requirements
 - (production machines / pcb requirements)
- Mechanical decoupling of sensitive components from stressed components
 (BGAs separated from connectors and sockets)

EINDHOVEN

TESTING ASPECTS

- ► SOM can be tested individually
- ► SOM can be tested deeper and more intelligent in terms of accessable testing points
- Significant less testpoints needed on baseboard (lower cost for adapter)
- ► SOM can come preconfigured (Bootloader, OS, application, MAC address)
- Testing by a robot (fewer human errors)

HMI ASPECTS

- ·
- Generic graphics interfaces on SOM
- Converter to individual display on baseboard
- Family adapter concept
- Drivers and adaption for mainstream and individual displays
- GUI via QT
- Optimized Browser for Webterminal functionality

SOFTWARE ASPECTS

- •
- ► Bootloader (Uboot)
- Linux BSP (Yocto based)
- Programming in C
- ► IEC 61131-3 PLC programming (CODESYS)
- GUI via QT
- Optimized Browser for Webterminal functionality
- Individual Software
- Support for individual components / drivers

VAN DER VALK HOTEL

EINDHOVEN

COST ASPECTS

- ➤ Separation of the (small) 8 to 10 layer SOM and the (larger) 4 to 6 layer baseboard (lower PCB cost)
- ► Separation of normal and ultra-fine conductor structures (lower PCB cost, higher availability of PCB manufacturers)
- SOM cost optimized
- Benefit from higher quantities
- Baseboard BOM optimized
- ► SOM product maintenance free of charge

STANDARDIZATION

- OSM Standardization procedure startet in SGET
- ▶ 4 form factors: zero, small, medium, large
 - ► 30x13,5; 30x30; 30x48; 48x48 (mm)
- Predefined pining
 - ▶ 147 pins, 267 pins, 395 pins, 593 pins (LGA)
- Broad range of manufacturers interested

SUMMARY OF ASPECTS

- Designing a system based on a modern, complex CPU is not a simple thing.
- Concentrate on your USP:
 The scope and the features of your product are your USP.
 The features, the functionality, the interfaces are placed on the baseboard.

- ▶ You get the schematic and the BOM of reference board (Open source hardware).
- ► You get the Linux BSP (Open source software).
- You can get design support (Review of schematic and layout).

UNLIMITED POSSIBILITIES

#askTELEREX

#thankyouforlistening