
1© Copyright 2019 Xilinx

Static Timing Analysis in a nutshell

Frank de Bont
Trainer / Consultant

2© Copyright 2019 Xilinx

► Every device path in a design must be analyzed with respect to timing
specifications / requirements
► Catch timing-related errors faster and easier than gate-level simulation & board testing

► Designer must enter timing requirements & exceptions
► Used to guide the FPGA tools during placement and routing
► Used to compare against actual results (post-place and route)

1
- 3

108090**slide

How does static timing analysis work ?

3© Copyright 2019 Xilinx

► Clocks are periodic signals

► Clocks have certain attributes
► Period
► Duty cycle
► Jitter
► Phase

► create_clock –name CLK –period 10 –waveform {2.0 7.0} [get_ports CLK]

1
- 3

120942

107658**slide

Clocks

4© Copyright 2019 Xilinx

► Often, the same components are on both the source clock path and the
destination clock path
►Source clock path is timed at [slow_max]
►Destination clock path is timed at [slow_min]

► But a given cell cannot have two different delays at the same time
►Results in pessimism due to the re-convergence of the clock path

1
- 1
5

120942

129049**slide

Clock Pessimism

5© Copyright 2019 Xilinx

► Most interfaces to an FPGA use synchronous communication
► The FPGA and the device driving the FPGA have some shared timing reference

► This is usually a common clock or a related clock

► Complete static timing path through an input
► Starts at a clocked element in the driving device

► Referenced to a clock provided to the driving device
► Ends at a clocked element in the FPGA

► Referenced to the clock that propagates to the destination clocked element in the FPGA
► Propagates through the elements between them

► CLK -> Q of the external device
► Board propagation time
► Port of the FPGA
► Combinatorial elements in the FPGA before the destination clocked element

1
- 3

108090**slide

Synchronous Input Interfaces

6© Copyright 2019 Xilinx

► By default, each input port can have one maximum delay and one
minimum delay
► The maximum delay is used for the setup check
► The minimum delay is used for the hold check
► Without the –max or –min option, the value supplied is used for both

► create_clock –name SysClk –period 10
► set_input_delay –clock SysClk 4 –max [get_ports DataIn]
► set_input_delay –clock SysClk 2 –min [get_ports DataIn]

1
- 8

121318

Minimum and Maximum Delays

7© Copyright 2019 Xilinx

►Both setup and hold at the FPGA input register are analyzed for timing

►Source and destination clocks need to be defined
► Create_clock (FPGA system clock and virtual upstream device clock)
► System (common) clock or forwarded clock

1
- 4

121318

Input Timing Overview (1)

8© Copyright 2019 Xilinx

►Upstream device delay and board trace delay need to be specified
► Maximum delay for setup analysis: set_input_delay -max
► Minimum delay for hold analysis: set_input_delay -min
► Referenced to the launch clock edge

1
- 4

121318

Input Timing Overview (2)

9© Copyright 2019 Xilinx

1
- 4

121318

Input Timing Analysis

10© Copyright 2019 Xilinx

1
- 1
7

121318

112452**slide

► create_clock –name SysClk –period 10 [get_ports Clkin]
► create_clock –name VirtClk –period 10
► set_clock_latency –source 1 [get_clocks VirtClk]
► set_input_delay –clock VirtClk 4 –max [get_ports DataIn]
► set_input_delay –clock VirtClk 2 –min [get_ports DataIn]

Input Static Timing Path with External Buffer

11© Copyright 2019 Xilinx

►To complete the static timing path, you need to describe the external
elements for the static timing engine

► What clock is used by the external device?
► Delay between the output port of the FPGA and the external device’s clock
► Includes the required time of the external device and the board delay

1
- 1
3

121318

108099**slide

Completing the Static Timing Output Path

12© Copyright 2019 Xilinx

► Setup and hold at the downstream device input pins are analyzed for timing

►Source and destination clocks need to be defined, from which the tool
derives the source and destination clock edges to consider

► create_clock (actual FPGA clock and virtual downstream device clock)
► system (common) clock or forwarded clock

► create_generated_clock for forwarded output clocks

1
- 1
1

121318

113143**slide

Output Timing Overview (1)

13© Copyright 2019 Xilinx

► Downstream device setup and hold requirements need to be specified

►Downstream setup requirement:
► set_output_delay –clock DstClk 4 –max [get_ports DataOut]

►Downstream hold requirement:
► set_output_delay –clock DstClk 2 –min [get_ports DataOut]

►Board trace delays should be included
►Referenced to the destination capture clock edge

1
- 1
2

121318

Output Timing Overview (2)

14© Copyright 2019 Xilinx

1
- 4

121318

Output Timing Analysis

15© Copyright 2019 Xilinx

►Combinational delays are paths that enter and exit the FPGA
without being captured by any sequential elements

1
- 1
1

121299

Combinational Delays

16© Copyright 2019 Xilinx

► Multicycle paths occur when registers are not updated on consecutive
clock cycles
► Always at least N clock cycles between the time the source flip-flops update and

the destination flip-flops capture the result
► Typically, the registers are controlled by a clock enable

► Example shows one form of an N-cycle, multicycle path

1
- 4

121337

Multicycle Paths

17© Copyright 2019 Xilinx

► The setup capture edge can be modified by specifying a multiplier value N
command:
► set_multicycle_path –from $from_list to $to_list –setup <N>
► The new setup capture edge will be <N> edges after the setup launch edge

► The hold capture edge usually needs to be modified with the –hold
command:
► set_ multicycle_path –from $from_list –to $to_list –hold <N-1>
► Returns the hold capture edge to the correct edge

1
- 7

121337

Modifying the Setup and Hold Capture Edge

18© Copyright 2019 Xilinx

► When the static timing path starts and ends on different clocks, the
setup check requirement is more complex

► All possible combinations of the source clock and destination clock
are examined
► From each edge on the source clock to the first edge of the destination clock

that is later in time
► The pair with the tightest requirement is used as the launch and capture edge

► Once the launch and capture edge is determined, the setup check is
performed

121325

Setup Checks on Paths with Different Clocks

19© Copyright 2019 Xilinx

► There are two possible hold checks for each possible setup check
► From the setup launch edge to the edge before the setup capture edge
► From the edge after the setup launch edge to the setup capture edge

► The launch and capture edges with the tightest requirement are used for
the hold check

1
- 8

121325

Hold Checks on Paths with Different Clocks

20© Copyright 2019 Xilinx

► Same clock domain or between synchronous clock domains
with same period and no phase-shift

► set_multicycle_path N –setup -from CLK1 –to CLK2
► set_multicycle_path N-1 –hold -from CLK1 –to CLK2

1
- 8

121325

Example of Multicycle Path (1)

21© Copyright 2019 Xilinx

► Between SLOW-FAST synchronous clock domains
dummy text

► set_multicycle_path N –setup -from CLK1 –to CLK2
► set_multicycle_path N-1 –hold –end -from CLK1 –to CLK2

1
- 8

121325

Example of Multicycle Path (2)

22© Copyright 2019 Xilinx

► Between FAST-SLOW synchronous clock domains
dummy text

► set_multicycle_path N –setup –start -from CLK1 –to CLK2
► set_multicycle_path N-1 –hold -from CLK1 –to CLK2

1
- 8

121325

Example of Multicycle Path (3)

23© Copyright 2019 Xilinx

► When a flip-flop (REGB0)
samples an asynchronous input,
the flip-flop can go metastable

► The metastability will probabilistically
resolve after some time

► Back to back flip-flops allow one clock
period for the metastability to resolve before
the second flip-flop samples it (REGB1)

► The Vivado timing engine sees the REGB0 →
REGB1 path as a normal static timing path,
subject to a normal setup check

► Allows one clock period of CLKB for the
propagation, including routing

► To leave time for metastability resolution, the
requirement on this path should be changed

1
- 1
4

121337

Constraining Metastability Flip-Flops

► set_max_delay –from [get_cells REGB0] –to [get_cells REGB1] 2

24© Copyright 2019 Xilinx

► When crossing asynchronously between different clock domains a clock crossing circuit is required

► Many approaches exist
► Use Gray code
► Use an enable to determine a stable point
► Use a FIFO

► In these cases, the clock propagation analysis is irrelevant and should be overridden with
the –datapath_only option

121337

1
- 1
5

112540**slide

Paths Between Different Clock Domains

► set_max_delay –from [get_cells REGA] –to [get_cells REGB0] 5 –datapath_only

► All of these approaches have implicit
assumptions

► Generally, the skew between different bits of the
bus to be crossed cannot exceed one clock
period

► It is not possible to constrain skew, but it is possible to
constrain the maximum delay on all bits of the bus

25© Copyright 2019 Xilinx

► Core|Vision has more then 200 man years of design experience in hard-
and software development. Our competence areas are:

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

Core|Vision

► Real-time
Embedded
Systems
Solutions

► FPGA Design
Consultancy

► FPGA Training ► IIoT Embedded
Sensor
Solutions

Visit our booth #31

26© Copyright 2019 Xilinx

► Essentials of FPGA Design 1 day
► Designing for Performance 2 days
► Advanced FPGA Implementation 2 days
► Design Techniques for Lower Cost 1 day
► Designing with Spartan-6 and Virtex-6 Family 3 days
► Essential Design with the PlanAhead Analysis Tool 1 day
► Advanced Design with the PlanAhead Analysis Tool 2 days
► Xilinx Partial Reconfiguration Tools and Techniques 2 days
► Designing with the 7 Series Families 2 days

Training Program

27© Copyright 2019 Xilinx

► Designing FPGAs Using the Vivado Design Suite 1 2 days
► Designing FPGAs Using the Vivado Design Suite 2 2 days
► Designing FPGAs Using the Vivado Design Suite 3 2 days
► Designing FPGAs Using the Vivado Design Suite 4 2 days
► Designing with the UltraScale and UltraScale+ Architecture 2 days
► Vivado Design Suite for ISE Software Project Navigator User 1 day
► Vivado Design Suite Advanced XDC and Static Timing Analysis

for ISE Software User 2 days

Training Program

28© Copyright 2019 Xilinx

► Designing with Multi Gigabit Transceivers 2 days
► C-Based Design: High Level Synthesis with Vivado HLx 2 days
► DSP Design Using System Generator 2 days
► Essential DSP Implementation Techniques for Xilinx FPGAs 2 days

Training Program

29© Copyright 2019 Xilinx

► Embedded Systems Design 2 days
► Embedded Systems Software Design 2 days
► Advanced Features and Techniques of SDK 2 days
► Advanced Features and Techniques of EDK 2 days
► Zynq All Programmable SoC Systems Architecture 2 days
► Zynq UltraScale+ MPSoC for the System Architect 2 days
► Introduction to the SDSoC Development Environment 1 day
► Advanced SDSoC Development Environment & Methodology 2 days

Training Program

30© Copyright 2019 Xilinx

► VHDL for Designers 3 days
► Advanced VHDL 2 days
► Comprehensive VHDL 5 days
► Expert VHDL Verification 3 days
► Expert VHDL Design 2 days
► Expert VHDL 5 days
► Essential Digital Design Techniques 2 days
► Developing with Embedded Linux 2 days
► Essential Phython 2 days

Training Program

31© Copyright 2019 Xilinx

► Solving Clock Domain Crossover Conflicts 2 days

Training Program

