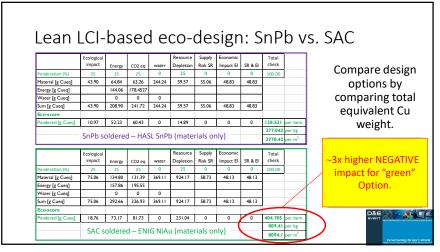
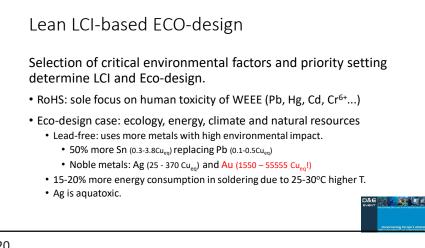

## Lean LCI-based eco-design example


Product out of RoHS scope: SnPb or lead-free soldering?

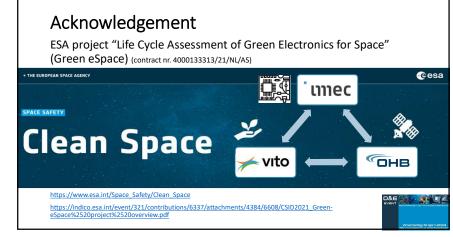

LCIA based one-time hot-spot analysis and priority setting

- 100% take back  $\rightarrow$  no WEEE ending up in environment  $\rightarrow$  Pb in waste is not an environmental issue.
- Environmental impact criteria:
  - Ecological impact
  - Energy and greenhouse gasses (CO<sub>2</sub>eq)
  - Materials: Resource depletion

| How to compare such different elements? |                              |                    |                     |                      |                      |                   |                    |                    |                        |                  |                   |                              |                    |          |              |
|-----------------------------------------|------------------------------|--------------------|---------------------|----------------------|----------------------|-------------------|--------------------|--------------------|------------------------|------------------|-------------------|------------------------------|--------------------|----------|--------------|
|                                         |                              |                    |                     |                      |                      |                   |                    |                    | _                      |                  |                   |                              |                    |          |              |
| E                                       | xpress                       | all L(             | CI/LCI              | IA pa                | ramet                | ters i            | n terr             | ns o               | f copp                 | er.              |                   |                              |                    |          |              |
|                                         |                              |                    |                     |                      |                      |                   |                    |                    |                        |                  |                   |                              |                    |          |              |
|                                         | Gobal                        | Ecopoints          | Ecopoints/          | Ecopoints            | Ecopoints/           | Embodied          | Embodied           | Embodied           | Embodied               | CO2,eq           | CO2,eq            |                              | ADP                | ADP      | ADP          |
| Element                                 | Production<br>2008 (kTonnes) | per year<br>MPt/vr | year/kg<br>Pt/yr/kg | per year<br>[# Cueg] | year<br>[gCueq/item] | Energy<br>[MJ/kg] | Energy<br>[kWh/kg] | Energy<br>[# Cuea] | Energy<br>[gCueg/item] | (GWP)<br>[kg/kg] | (GWP)<br>[# Cuea] | CO2,eq (GWP)<br>[gCueq/item] | [kgSbeg/kg]        | [# Cueal | [gCueq/item] |
| Auminum                                 | 39590                        | 20000              | 0.51                | 0.1                  | 0.00                 | 210               | 58.33              | 3.5                | 0.00                   | 13               | 3.5               | 0.00                         | 4.2E-08            | 0.00     | 0.00         |
| Copper                                  | 17660                        | 150000             | 8.49                | 1.0                  | 41.87                | 60                | 16.67              | 1.0                | 41.87                  | 3.7              | 1.0               | 41.87                        | 0.027              | 1.00     | 41.87        |
| Gold                                    | 2.276                        | 30000              | 13181.02            | 1551.8               | 0.00                 | 250000            | 69444.44           | 4166.7             | 0.00                   | 15000            | 4054.1            | 0.00                         | 1500               | 55555.56 | 0.00         |
| Lead                                    | 8065                         | 5000               | 0.62                | 0.1                  | 0.24                 | 27                | 7.50               | 0.5                | 1.50                   | 1.9              | 0.5               | 1.72                         | 0.019              | 0.70     | 2.35         |
| Nickel                                  | 735.3                        | 7000               | 9.52                | 1.1                  | 0.00                 | 170               | 47.22              | 2.8                | 0.00                   | 11               | 3.0               | 0.00                         | 0.0012             | 0.04     | 0.00         |
| Platinum                                | 0.1926                       | 1100               | 5711.32             | 672.4                | 0.00                 | 270000            | 75000.00           | 4500.0             | 0.00                   | 15000            | 4054.1            | 0.00                         | 1000               | 37037.04 | 0.00         |
| Silicon (wafer)                         |                              |                    |                     | 0.0                  | 0.00                 | 7860              | 2183.33            | 131.0              | 0.00                   | 2100             | 567.6             | 0.00                         | 1.3E-09            | 0.00     | 0.00         |
| Silver                                  | 21.35                        | 7000               | 327.87              | 38.6                 | 0.00                 | 1500              | 416.67             | 25.0               | 0.00                   | 100              | 27.0              | 0.00                         | 10                 | 370.37   | 0.00         |
| Fantalum                                | 27                           | 25                 | 0.93                | 0.1                  | 0.00                 | 4300              | 1194.44            | 71.7               | 0.00                   | 260              | 70.3              | 0.00                         | 0.0016             | 0.06     | 0.00         |
| l'in .                                  | 333.4                        | 900                | 2.70                | 0.3                  | 1.78                 | 230               | 63.89              | 3.8                | 21.47                  | 13               | 3.5               | 19.68                        | 0.074              | 2.74     | 15.35        |
|                                         |                              |                    | Ecol                | ogical impact        | 43.90                |                   |                    | Energy             | 64.84                  |                  | CO2 eq            | 63.26                        | resource depletion |          | 59.57        |








## Lean LCI-based ECO-design

- "Everything should be done as simple as possible but not simpler" (A. Einstein)
- Focusing on a single impact factor may be counter productive.
- Environmental impact is complex. Multiple factors need to be taken into account.
- Relevant impact factors depend on the product's life cycle.
- Do the math and let the numbers speak.
- Always acknowledge assumptions and uncertainties.



21



## Key elements of a sustainable future

Environmental impact assessment & reduction Increased life-time Circular business models Improved end-of-life handling

