Rise of Battery-less IoT

Jay Nagdeo

European IoT Solutions Architect

acal ^{bfi}

Het ontwerpen van innovatieve elektronica

Index

- Introduction
- Challenges with Batteries in IoT
- What is Battery-less IoT & Energy Harvesting?
- Energy Harvesting Technologies
- Ultra-Low Power SoCs
- Outcome
- Applications

Batteries!

Challenges with batteries in IoT

The Trillion Battery Problem

© Acal BFi Trillion Battery Problem

Woensdag 20 maart 2024 1931 Congrescentrum 's-Hertogenbosch

bfi

"The cost of getting to a remote sensor to change a battery is often much higher than the cost of the battery itself"

Impractical to Scale and Maintain!

Size Matters!

- Battery limitations restrict device placement and functionality
- To increase lifespan, devices are often configured to transmit data less frequently

Environmental Challenge

© Acal BFi <u>78 million batteries</u>

Solution?

Go Battery-less!

Switch to Battery-less, self-powered IoT using ambient Energy Harvesting

Energy Harvesting?

First observation: 1826!

Energy Harvesting Techniques

Energy Harvesting Techniques

Photovoltaic (PV) <u>, ttt</u>

Thermal

Mechanical

Radio Frequency (RF)

Photovoltaic (PV) Harvesting

- Where there is light, there is Energy!
- Many examples in commercial products today also being added into beacons, sensors, and tags for IoT applications
- PV is not just about silicon anymore new technologies like dye-sensitized and organic materials are viable options
- Features like flexible substrates and custom form factors make adding PV to existing applications easier

Woensdao 20 maart 2

How much energy can you harvest?

Light Level (IUX)	Harvested Energy (µW/cm²)	Conditions
100	3-10	Dim Indoor
200	7-20	Residential
500	20-45	Office
1000	35-90	Bright Office, Retail, Overcast day
20K	2-4K	Full Daylight
100K	15-20K	Direct Sunlight

Energy harvested varies based on PV cell technology and optimal performance range

Woensdag 20 maart 2024 1931 Congrescentrum 's-Hertogenbosch

ac

D&E

Mechanical Harvesting

- Mechanical energy harvesting rely on either piezoelectricity or electromagnetism to create a burst of energy
- IoT Wireless switches use the motion of a magnet through a coil to convert mechanical to electrical energy
- Actual amount of energy harvested is in 100s of μW enough power for multiple wireless transmissions

Thermal Harvesting

- Thermo-Electric Generator (TEG) requires a temperature gradient to generate electricity
 - Heated electrons to flow from hot to cold side of the TEG
 - Heat sinks increase cold side thermal dissipation
- Thermal sources may be human body, HVAC Air Flow, Machinery
 - Amount of energy generated based on TEG size and temperature gradient
 - 0.25 in² TEG generates ~100 μ W from finger touch (+5 Δ T °C)
- Applications
 - Fitness Bands and Smart Watches
 - Wearables/Tracking Beacons
 - Remote Sensing/Environmental Monitoring

RF Harvesting

Transmission loss depends on frequency and distance

Lower loss at sub-GHz frequencies Receiver

Harvested power available depends on sensitivity of receiver, efficiency of both harvester and energy storage

Woensdag 20 maart 2024 1931 Congrescentrum 's-Hertogenbosch

Regulatory considerations define available frequency bands and maximum output power

RF Harvesting

- For 2.4 GHz, not much energy (<100µW) available beyond 1m
- Sub GHz bands provide energy out past 2-3m

Theoretical Maximum Received Power vs. Distance

Ultra-low Power Consumption SoC

Architecture BLE SoC

Sensor Hub

Woensdag 20 maart 2024 931 Congrescentrum 's-Hertogenbo:

bfi

© Acal BFi

Sensor Hub

Reduces overall power consumption for sensing applications

Sensor Hub is operational during SoC Hibernation

- Collects sensor data via SPI or I2C
- Stores data directly to RAM/external Flash

Sensor Hub can transmit the data without waking the MCU

- Enables the Sensor Hub to send periodic Bluetooth LE advertisement with sensor data

Wake on RF

Woensdag 20 maart 2024 931 Congrescentrum 's-Hertogenbosch

bfi

© Acal BFi

Wake on RF

- Facilitates on-demand or infrequent wakeup applications
- Separate wideband receiver enabled while chip is in hibernate
 - Input frequency 400 MHz to 2.5 GHz
 - Consumes only 300nA additional power
- Wakeup signal from mobile phone, tablet, gateway, or dedicated hardware
 - Use BT (inquiry), iBeacon, or non-BLE signaling
 - OOK detection in receiver
 - Individual device or group addressing supported

Outcome

Sweet Spot

© Acal BFi Sweet Spot

Woensdag 20 maart 2024

bfi

Changing the Power Equation

Woensdag 20 maart 2024

Applications

Energy Harvesting Methods and Applications

Woensdag 20 maart 2024

bfi

Demo: Battery-less PV BLE Beacon

To demonstrate how the energy harvesting capabilities can use indoor lighting conditions to implement fully battery-free beacon designs.

Acal BFi: Stand 15

Thank you

Jay Nagdeo

European IoT Solutions Architect

E-mail: jay.nagdeo@acalbfi.com Website: www.acalbfi.com

bfi European leader in advanced technology solutions

Het ontwerpen van innovatieve elektronica