
In-System Flash Programming

Hoe kan het betrouwbaar, snel en veilig tijdens de ontwikkeling, het onderhoud en in productie.

Gerard Fianen
INDES-Integrated Development Solutions BV

In-System Flash Programming

• Types of Flash memory

• The Flash programming driver

• In-Field & Production programming

• Protecting your IP

Endurance in P/E cycles (SLC) Virtually unlimited Virtually unlimited 90-100k 100k – 1M

(*) Wear levelling
Rotating blocks of pages around in the NAND Flash, evening out the number of erasures per block
Typically, 64 pages in a block

(*)

(*)

Comparing memory types -1

Comparing memory types -2 Execute in place !

To erase a NOR flash cell (resetting it to the "1" state), a large voltage of the opposite polarity is applied between
the CG and source terminal, pulling the electrons off the FG through quantum tunneling.

NOR flash memory chips are divided into erase segments (often called blocks or sectors). The erase operation can
be performed only on a block-wise basis; all the cells in an erase segment must be erased together. Programming
of NOR cells, however, generally can be performed one byte or word at a time.

NOR Flash memory

https://en.wikipedia.org/wiki/Quantum_tunneling

NAND Flash memory has millions of charge trap memory cells. Each Charge Trap flash memory Cell (CTF) can either trap electrons or
release them. Hence each cell could represent only one bit either 0 or 1 in the past.

CTF has three functional parts known as Gate, Channel, and Charge Trap. All of these are separated using a dielectric material. The
Charge Trap part can store or release the stored electrons in it. If there are no electrons trapped then the cell represents 1, otherwise 0.

Note: Some more modern CFT’s can store more values than the previous ones. This is achieved by storing different charge levels in the
Charge Trap part. For example, for representing 8 different values we need 8 different charges or voltage.

NAND Flash memory

The NAND flash memory array is partitioned into blocks that are, in turn sub-divided into pages. A page is the smallest
granularity of data that can be addressed by the external controller. A set of FGTs connected in series is referred to as
a string. The number of FGTs in a string is equal to the number of pages in a block. Each column corresponds to a
string while each row corresponds to a page. Word lines select a page of memory to perform read or program
operation. These operations first involve selecting a block using a block decoder following which one of the rows in a

block is selected using a page decoder.

NAND Flash memory block diagram

The NAND flash memory array is partitioned into blocks that are, in turn sub-divided into pages. A page is the smallest
granularity of data that can be addressed by the external controller. A set of FGTs connected in series is referred to as
a string. The number of FGTs in a string is equal to the number of pages in a block. Each column corresponds to a
string while each row corresponds to a page. Word lines select a page of memory to perform read or program
operation. These operations first involve selecting a block using a block decoder following which one of the rows in a

block is selected using a page decoder.

NAND Flash memory block diagram

Scenarios to improve programming time

• Download image to RAM --> RAM to Flash (If needed page-by-page)

• Page flipping :
Download next page to RAM while programing one page

• Programmer can instruct the target to increase MCU clock frequency

• NOT needed if the Flash is in the MCU and
the Flasher already knows the specific MCU

• REQUIRED for External NAND flash (or
complex targets such as multi-MCU)

• Our FAE has a lot of experience with (also
complex) Flash programming drivers

Flash Driver ?

// low-level byte copy subroutines
// low-level NAND chipselect subroutines
// low-level NAND I/O subroutines
// low-level ECC subroutines

// NAND page I/O subroutines
// mapping logical blocks to physical ones

// main programmer API:

void FLASH_GetDesc() {
// initialize information about chip dimensions
// provide information about features supported by driver

}

// hardware initialization
int FLASH_Prepare() {
// initialize pins (pin select, drive strength, pull-up/down, direction)
// initialize ECC engine
// load DBBT – discovered bad block table

}

Creating a Flash driver : Pseudo-code -1

// read a number of pages into RAM, skipping bad blocks
void FLASH_Read() {
// map logical blocks to physical blocks (uses DBBT)
// command the NAND chip to read data, copying each page to RAM
// run the data through the ECC engine
// check the bad block marker
// arrange the data according to the expected layout (user data + meta data)

}

// program a number of pages with data from RAM, skipping bad blocks
void FLASH_Program() {
// map logical blocks to physical blocks (uses DBBT)
// arrange the data according to the expected layout
// run the data through the ECC engine
// write each page to the NAND and give the command to program

}

// erase the whole chip, or a number of blocks
void FLASH_Erase() {
// map logical blocks to physical blocks (uses DBBT)
// command the NAND to erase each block, mark bad blocks as

needed
}

// de-initialization
void FLASH_Restore() {
// program the bad block information if it was changed

}

Creating a Flash driver : Pseudo-code -2

/* programs 1 DBBT */
int dbbt_program1()
{
// program first 2 pages of block with DBBT information

}

/* programs all DBBTs */
int dbbt_program()
{
// loop over the first 4 blocks

}

// reads bad block marker of a block, returns GOOD, BAD or ERROR
int checkBbm()
{
// read first page of block
// extract BBM

}

// determines whether a block is bad
int isBadBlock()
{
// consult DBBT in RAM
// check BBM if necessary, updating DBBT in RAM

}

// marks a block as bad
void markBlockAsBad()
{
// update DBBT in RAM

}

Creating a Flash driver : Pseudo-code -3

dbbt.c – discovered bad block table

• Li-Ion battery Powered
• Target Voltage 1,2 – 5 Volt
• Target i/f : JTAG / SWD / FINE / SPD
• 128 MB memory for target programs
• Supports multiple MCU families
• Support Authorized Flashing

Field Flash Programming

Pre-configure the Flasher with a given setup (Code and number of copies)
- Download the code image in secure area of the Flasher
- Set Maximum number of Flash programming Cycles.

Once the pre-defined number of devices is programmed, the Flasher must be re-
programmed to start a new programming cycle.

Protecting your IP : Authorized Flashing

Protecting your IP : Authenticated Production

Demonstraties op onze stand (stand 11)

INDES –
Integrated Development Solutions BV

Cross Compilers, Debuggers, IDE
RTOS, Middleware, Protocol stacks, Security, GUI, EFS

Debug & Trace probes, Emulators
Real-Time Trace, RTOS-Event Trace

Static Analysis, Timing Analysis, Stack Analysis
Unit Test, Code Coverage

(Production) Flash Programming

On-site support
Test-as-a-Service

Verification-as-a-Service

www.indes.com info@indes.com
Tel: 0345 - 545.535

	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18: Demonstraties op onze stand (stand 11)
	Dia 19

