EDGE AI: Innovations in Flash and DRAM

Dominique van Doorn Senior Sales Channel Manager – Innodisk Europe

Het ontwerpen van innovatieve elektronica

Agenda

Quick Intro

Deep dive into Form Factors for Flash (E1.S + M.2)

- Performance
- > Density
- Thermal design (1U Storage server + Fanless BoxPC)

• iSLC (Pseudo SLC) technology for Flash

- Endurance benefits
- DRAM usage

DRAM for Challenging environments

- > 1st grade factory die
- > Ultra wide temperature specs
- Very Low Profile UDIMM with ECC
- DDR5 customizations
- Q&A Session

Quick Intro Dominique + Innodisk / Telerex

A Global AloT Solutions Provider

Pioneering the development of AloT solutions by integrating its software and hardware technologies, Innodisk aims to cooperate with global partners to build an intelligent world.

14 years active in Industrial Automation

From sensor to systems with a touch of AI \odot

- Isotron Systems 's-Hertogenbosch
- Advantech Europe Eindhoven
- Scailable, AI startup Eindhoven
- Innodisk Europe Eindhoven

- Former Connectors: Pata / IDE, still used in legacy 80x86 systems.
- Current (most used) Connectors: Sata -Already different form factors: 2.5" and M.2
- New and upcoming NVMe

NVMe Form Factor Comparison

Performance – IOPS

Table 2: Performance - 112 layers 3D TLC

Capacity	Unit	512GB	1TB	2ТВ	4TB	8TB
Sequential**		E 700	6 050	6 650	6 650	6 400
Read (Q8T1)		5,700	6,950	6,650	6,650	6,400
Sequential**	MB/s	2.250	4.150	4.050	4.050	4 000
Write (Q8T1)		2,250 4,150 4,950	4,950	4,800		
Sustained Sequential			2 200	2,000		
Read (Avg.)***		1,950	2,450	1,650	2,300	2,000
Sustained Sequential		450	950	2 200	1 750	1 400
Write (Avg.)***		450	850	2,200	1,750	1,400
4KB Random**		478.000	015 000	015 000	001 000	010 000
Read (Q32T16)	IOPS	478,000	815,000	815,000	821,000	819,000
4KB Random**		E04.000	605 000	709.000	722.000	712.000
Write (Q32T16)		594,000	000,000	708,000	722,000	/12,000

*IOPS × TransferSizeInBytes = BytesPerSec

Woensdag 20 maart 2024 1931 Congrescentrum 's-Hertogenbosch

THE SAFEST CHOICE

innodisk

D&E

Endurance – P/E Cycles

https://www.kingston.com/en/blog/pc-performance/difference-between-slc-mlc-tlc-3d-nand.

Woensdag 20 maart 2024 1931 Congrescentrum 's-Hertogenbosch

THE SAFEST CHOICE

Reliability – TBW

TBW* (Total Bytes Written) Unit: TB				
Capacity	Sequential workload	Client workload		
512GB	1,363	703		
1TB	2,727	1,636		
2TB	5,545	3,958		
4TB	10,908	7,904		
8TB	21,816	16,246		

INNODISK THE SAFEST CHOICE TELEREX

Reliability – DWPD

DWPD or DW/D - Drive Writes Per Day.
GB/day - Gigabytes written per day.
TBW - Total Bytes Written, usually expressed in terabytes - TBW (TB) or petabytes - TBW (PB).
Given S - disk capacity in GB and T - warranty / useful life period in years, conversion between different SSD endurance specifications can be performed as follows:
DWPD = GB/day ÷ S

$$DWPD = (TBW_{(TB)} \times 1000) \div (S \times T \times 365)$$
$$GB/day = DWPD \times S$$

 $GB/day = (TBW_{(TB)} \times 1000) \div (T \times 365)$ $TBW_{(TB)} = (DWPD \times S \times T \times 365) \div 1000$

 $TBW_{(TB)} = (GB/day \times T \times 365) \div 1000$

	Capacity	TBW	DWPD
	512GB	703	1.4
/	1TB	1,636	1.7
	2TB	3,958	2.0
	4TB	7,904	2.0
	8TB	16,246	2.1

Density + Thermal 1U server

Thermal Design / Power Consumption Fanless-BoxPC

Mode	Power Consumption (W)
Read (RMS) ¹	2.1
Write (RMS) ¹	2.0
Idle	1.0
Boot Up	5.5

* Target 2.5" SATA SSD 3TE7 2TB

	•		
Mode	Power Consumption (W)		
Read	8.9		
Write	7.2		
Idle	2.4		
Power-on peak	10.9		
Target: 4TB M.2 (P80) 4TG2-P			

Mode	Power Consumption (W)
Read	10.0
Write	10.9
Idle	2.8
Power on peak	15.4

Target: 4TB E1.S 4TG2-P

iSLC (Pseudo SLC) technology for Flash

Item	SLC Single Level Cell	iSLC Inno SLC mode		MLC Multi Level Cell	3D TLC Triple Level Cell	
	SLC Flash has only two states: erased (empty) or programmed (full).	Enhance iSLC, algorithm & Enhance ECC		MLC Flash has four states: erased (empty), 1/3, 2/3, and programmed (full).	states: 3D TLC Flash has eight states , 2/3, and and multiple stacking layers.	
Architecture	V Total 0 SLC One bit per cell	MLC ISLC 0 V0 V1 V2		Vrout 11 10 01 00 MLC Two bits per cell	111 100 101 001 001 001 000 TLC Three bits per cell	
Performance	***	****		***	**	
ECC Requirement	24 bit	MLC (2D NAND	TLC (3D NAND)	. 40 bit	120 bit	
(регкв)		40 bit	120 bit			
Endurance (P/E Cycles)	60K	20K	30K (100K*)	ЗК	Industrial	Enterprise
					ЗK	10K
Data Retention @ Initial	10 Years	10 Years		10 Years	10 Years	5 Years
Data Retention @ Life End	1 Year	1 Year		1 Year	1 Year	4 Month
Density	3D TLC> iSLC(3D) = MLC> iSLC(2D) >SLC					

innodisk THE SAFEST CHOICE TELEREX

iSLC and capacitors (iCell) in Flash Technology

- *iSLC for better Endurance*
- DRAM: Faster and more efficient
- Capacitors: Sudden shutdown of systems

	HOST				
	HOST Interface				
	ID 167				
Те	iCell chnology	DRAM Buffer			
Flash	Flash	Flash Flash			
Flash	Flash	Flash Flash			

Woensdag 20 <u>maart 20</u>

DRAM for Challenging environments

DRAM for Challenging environments

Ultra Temperature DRAM Modules offer

robust performance in extreme

conditions.

Extensive operating temperature range of -40 to 125 °C for DDR4 and -40 to 105 °C for DDR5

Very Low Profile UDIMM with ECC

DDR4 UDIMM

DDR5 customizations

Anti-Sulfuration

Anti-sulfuration resistors against sulfide

Automatic Conformal Coating

Against humidity, dust contaminants and chemicals

Side Fill

Better equipped for tough situations and thermal extension

Heat Spreader

2 solutions offered: Aluminum (plate) Carbon nanotube (sheet)

Q&A Session

innodisk

Innodisk Europe B.V. Pisanostraat 57, Eindhoven

Dominique_van_Doorn@innodisk.com

Het ontwerpen van innovatieve elektronica