Multiphase flow measurements based on Magnetic Resonance Technology

Jankees Hogendoorn (KROHNE)
Mark van der Zande (KROHNE)
1. KROHNE

2. Multiphase flow in the oil industry

3. Magnetic Resonance

4. Flow measurements

5. Performance

6. Conclusions and Outlook
KROHNE:

- Supplier of innovative measurement solutions for the process industry
- Founded in 1921
- 100% family owned
- World wide presence (> 3000 employees)

- In Dordrecht (NL): R&D and production of flow meters (>400 employees)
KROHNE:
Product portfolio

- Flow measurement
- Level measurement
- Pressure measurement
- Temperature measurement
- Analysis products
- Communications
- KROHNE Services
- Systems for marine industry
- Systems for oil and gas industry
KROHNE: New development

- Multiphase flow measurement
- Oil and gas industry
- Magnetic Resonance

M-PHASE 5000

Collaboration between SHELL and KROHNE
1. KROHNE

2. Multiphase flow in the oil industry

3. Magnetic Resonance

4. Flow measurements

5. Performance

6. Conclusions and Outlook

M-PHASE 5000

Agenda
Multiphase Flow Measurement in Oil Production

- Over 800,000 oil wells worldwide
- Oil wells produce a mixture of oil, water and gas.
- Multiple well producing to one main production line (sometimes up to 40!)
- Sometimes wells are owned by different companies
- Separation takes place on **comingled** flow
- Information is needed on flow performance of **individual wells**:
 - Production allocation
 - Production optimization
Multiphase Flow Measurement in Oil Production

Test separator:
- Test manifold with bypass lines
- Individual well can be selected
- Single phase flowmeters to measure oil, water and gas

Note:
- Bulky configuration
 - Large space claim
 - Long stabilization time
- Regular maintenance needed
 - Valves
 - Calibration of flowmeters
- Limited rangeability regarding production rate:
 - Variations from well to well
 - Variations over lifetime
Multiphase Flow Measurement in Oil Production

Multiphase flowmeter:
- One multiphase flowmeter
- Replaces test separator
- Test manifold and test line needed for well test purposes.
- Save on:
 - Space
 - Weight
 - Cost
 - Test time
Multiphase Flow Measurement in Oil Production

Multiple multiphase flowmeters:
- One multiphase flowmeter per well
- Replaces test separator and test manifold
- Installation close to the well head possible
- Continuously monitoring of production rate:
 - Well testing
 - Flow assurance
 - Allocation
Multiphase flow:

- Complex flow, several different flow regimes
- Heavy unsteady flow conditions possible
- Oil / Water / Gas ratio can fluctuate

Challenge for flow measurement

→ magnetic resonance!
1. KROHNE
2. Multiphase flow in the oil industry
3. Magnetic Resonance
4. Flow measurements
5. Performance
6. Conclusions and Outlook
Measurement principle: Magnetic Resonance

- Various Nobel prizes have been awarded related to magnetic resonance:
 - 1943, O. Stern: magnetic moment of a proton
 - 1944, I. Rabi: magnetic resonance (MR) of a proton
 - 1952, F. Bloch, E. Purcell: MR in liquids and solids
 - 1991, R. Ernst: MR spectroscopy (chemistry)
 - 2002, K. Wüthrich, Fenn, Tanaka: MR spectroscopy for resolving 3D structures
 - 2003, P. Lauterbur, P. Mansfield: Magnetic Resonance Imaging (Medical)

- Various instruments have been based on magnetic resonance, e.g.:

 MRI medical scanner
 www.philips.com

 Table top MR analyzer
 www.oxford-instruments.com
Measurement principle: Magnetic Resonance

- Makes use of very fundamental physical property of atoms, and allows you to ‘count’ hydrogen atoms

- The principle:
 - Oil, water and gas contain hydrogen atoms
 - In a magnetic field the nucleus of the hydrogen atom (proton):
 - aligns with the applied magnetic field
 - precesses around magnetic field lines (frequency proportional to magnetic field strength).
 - When irradiated with radio waves of the same frequency, the protons resonate (react to the RF signal)
 - The protons absorb and re-emit the radio energy of the same frequency. The emitted signal (echo) is proportional to the number of protons
1. KROHNE
2. Multiphase flow in the oil industry
3. Magnetic Resonance
4. Flow measurements
5. Performance
6. Conclusions and Outlook
Mechanical Design:

- 100mm (4inch), full bore pipe, horizontal configuration, length approx. 3.5m.
- Ambient operating temperature: -40°C to + 65°C, process temperature: 93 °C
- Process pressure: 100 bar
- All electronics mounted directly on the flowmeter in two flame-proof boxes
Mechanical design (interior)
MR measurement principle for flow measurements

- In the flow meter, we are mainly measuring 2 properties:
 1. The fraction (λ) of oil, water and gas is in the measurement section.
MR measurement principle for flow measurements

- In the flow meter, we are mainly measuring 2 properties:
 1. The fraction (λ) of oil, water and gas is in the measurement section
 2. What is the velocity (v) at which it travels

- From this data the volumetric flow rates (Q) can be calculated
1) Measurement of liquid and gas velocity

Fluid Velocity determination:
- ‘Convective decay’ method
- Excited protons are leaving the coil due to flow
- Measure the decrease in amplitude of the echoes

\[v = \frac{L_c}{t_{S=0}} \]
2) **Measurement of oil and water fraction**

- We make use of the fact that oil and water magnetize at a different rate (time constant)
- This difference creates a contrast between the oil and the water
2) Measurement of oil and water fraction

- We make use of the fact that oil and water magnetize at a different rate (time constant)
- This difference creates a contrast between the oil and the water

By measuring the signal for two different magnetization lengths, and calculating the ratio, the fraction of oil and water can be derived.
1. KROHNE
2. Multiphase flow in the oil industry
3. Magnetic Resonance
4. Flow measurements
5. Performance
6. Conclusions and Outlook
Overview (multiphase) flow test locations

SwRI (TX, USA)

Donau Shell (NL)

Xcaliber (NL)

DNV – GL (NL)
Performed tests
Overview test points

Parameter range:
Pressure: 3-90 barg
Temperature: 25-40 °C
Salinity: 0-250 g/l
Viscosity: 1-45 cSt
Performed tests; DNV-GL o/w/g

Good accuracy both in liquid and gas flow rate:

- No systematic error
- Good accuracy for both liquid and gas flow rates
- Accuracy achieved over large dynamic range
Perfomed tests; DNV-GL o/w/g

24 m³/h Oil, 6 m³/h Water, 8 Am³/h Gas, 4” pipe, P = 30 bar, T = 25 °C
Perfomed tests; DNV-GL o/w/g

Gas results:
- Good performance
- No regime dependency

Liquid results:
- Good performance
- Increasing error $\text{GVF} = 0.99$
Performed tests; DNV-GL o/w/g

54 m³/h Oil, 6 m³/h Water, 60 Am³/h Gas, 4” pipe, P = 30 bar, T = 25 °C
Performed tests
Results plotted in flowmap (for DNV-GL loop at 31 bar):

- Good accuracy both in liquid and gas flowrate:
 - No systematic error
 - Good accuracy for both liquid and gas flow rates
 - Accuracy achieved over large dynamic range
Field Test:

- NAM Rotterdam

The multiphase flow meter co-developed by Krohne and Shell and deployed at NAM Rotterdam
Field Test:

- NAM Rotterdam

The multiphase flow meter co-developed by Krohne and Shell and deployed at NAM Rotterdam
Field Test:

- NAM Rotterdam
Field Test:

- NAM Rotterdam

The multiphase flow meter co-developed by Krohne and Shell and deployed at NAM Rotterdam
1. KROHNE
2. Multiphase flow in the oil industry
3. Magnetic Resonance
4. Flow measurements
5. Performance
6. Conclusions and Outlook
Conclusions:

- M-PHASE 5000 is a multiphase flow meter for the oil and gas industry
- Measurement principle: Magnetic Resonance
- One single measurement principle for oil, water and gas flowrates
- Full bore design, no sensors inside pipe
- No radioactive sources
- Suited for a large range of flow conditions
- Easy to install

Outlook:

- Additional MR functionality, for example:
 - (spectral) analysis
 - imaging
QUESTIONS?

Thank you for your attention!