BTS and Site Master based D-RoF CPRI measurements the tool to scope with C-RAN architecture and front haul challenges

Ferdinand Gerhardes

April 2016

Synopsis

Presentation: BTS and Site Master based CPRI measurements the tool to scope with C-RAN architecture and front haul challenges

Many cellular networks have begun to deploy a distributed architecture where the traditional radio has been split into a baseband unit (BBU) and remote radio head (RRH). This provides the ability to replace the coaxial RF cable from the radio unit at the base of a tower to the antenna array at the top of a tower with a fiber optic cable. RF cables have limitations in that they suffer power loss and are subject to performance degradation over time due to damage or corrosion.

In D-RoF applications the BBU and RRH are typically connected with a fiber link conforming to the common public radio interface (CPRI). When installing a system with fiber connections, it is important to validate on ground level that the digital RF signals as well as signaling to and from the RRH are performing as wanted. By installing an optical Test Access Point (TAP) or splitter into the link, the spectrum of the uplink and downlink can be monitored for interference, Passive Intermodulation effects and noise.

Anritsu's BTS Master, Cell Master and Site Master product families enable new possibilities to test C-RAN connections in order to avoid unnecessary tower climbing and thus optimize OPEX.

Presenter: Ferdinand Gerhardes

envision : ensure

Contact/Info: For further information please contact: Mr. Ferdinand Gerhardes Mobile: +49 151 4260 6872 <u>ferdinand.gerhardes@anritsu.com</u>

CPRI based RF measurements Copyright© Anritsu Corporation

2

Agenda

- Evolution of Radio Access Networks
- CPRI versus OBSAI versus ORI
- CPRI System Architecture
- CPRI based D-RoF measurements
- CPRI measurement features

BTS Master

Evolution of Radio Access Networks

Before (D-RAN) - Standalone Base Station, Distributed RAN

Anritsu envision : ensure

RRHs

BBU

Evolution of Radio Access Networks

After (C-RAN) - Separated Base Station, Centralized RAN

CPRI versus OBSAI versus ORI

What is **CPRI**

- CPRI is a digital interface standard for encapsulating radio samples between a radio and a digital baseband processing unit. The interface is not packet-based; rather signals are multiplexed in a low-latency timeslot-like fashion
- The Common Public Radio Interface (CPRI) standard defines the interface of base stations between the Radio Equipment Controllers (REC) to local or remote radio units, known as Radio Equipment (RE).
- The companies working to define the specification include
 - Ericsson AB,
 - Huawei Technologies Co. Ltd,
 - ► NEC Corporation,
 - Alcatel Lucent and
 - Nokia Solutions and Networks Co. KG
- CPRI interface is supporting wired as well as optical transmission of I/Q-samples

CPRI Basic System Architecture

- Based on a Radio Base Station architecture dividing the Radio Base Station into a radio part and a control part
- CPRI specification defines in a simple and flexible way the Radio Base Station internal interface between these two parts

CPRI Transport Concept

CPRI RCE – RE functional description

CPRI RCE – RE functional description

I/Q sample data rate in function of radio technologies

/Inritsu envision:ensure

CPRI option 1 basic frame structure (128 bits)

CPRI Frame & Subchannel (Control Plane) Architecture – CPRI Frames

CPRI basic frame structures per option

Standard configuration for many configurations in practice!

CPRI link capacity per option

CPRI Option	CPRI Rate ← (After 8B/10B)	— Including 4 CW	— Payload rate	Length of CW [bit]	Length of payload [bit]	# of option1 basic frames/1 chip (260.42ns)
1	614.4Mbps	491.5Mbps	460.8Mbps	8	120	1
2	1.2288Gbps	983.0Mbps	921.6Mbps	16	240	2
3	2.4576Gbps	1.9661Gbps	1.8432Gbps	32	480	512 Bit 4
4	3.0720Gbps	2.4576Gbps	2.3040Gbps	40	600	5
5	4.9152Gbps	3.9322Gbps	3.6864Gbps	64	960	8
6	6.1440Gbps	4.9152Gbps	4.6080Gbps	80	1200	10
7	9.8304Gbps	7.8643Gbps	7.3728Gbps	128	1920	16
8	10.1376Gbps	9.8304Gbps	9.2160Gbps	128/160	2400	20

Bitstream example - 20 MHz LTE, 2 Carriers

- Two LTE 20 MHz carriers with 15-bit IQ samples mapped onto a Rate 3 (2457.6 mbps, 32 bit words)
- Basic frame with mapping method 1 or 3 with no interleaving
- Two LTE 20 MHz carriers with 15-bit IQ samples mapped onto a Rate 3 (2457.6 mbps, 32 bit words)
- Basic frame mapping method 3 with interleaving

Required CPRI link capacity in function of radio technologies

/incitsu envision:ensure

CPRI basic frame structures per option

CPRI Option	Line Rate [Mbit/s]	#WCDMA AxC	#20 MHz LTE AxC
1	614,40	4	
2	1.228,80	8	1
3	2.457,60	16	2
4	3.072,00	20	2
5	4.915,20	32	4
6	6.144,00	40	5
7	8.110,08	64	8
8	9.830,40	64	8
9	10.137,60	80	10
10	12.165,12	96	12

Each 20 MHz LTE AxC stream requires ~ 1 Gbps!

- Lower OpEx costs (Operational Expenses)
 - Check functionality and potential RF Interference at ground level
 - Minimize calls for a Tower Crew
 - Typical cost \$2000 to \$5000
 - Verify interference
 - In-Band interference
 - Verify PIM
 - Noise floor measurement
 - Implied PIM Diversity imbalance
 - Based on measurements make decision
 - Call in Tower Crew
 - Do Not call in Tower Crew

- Test Layer 1 Physical transport
 - ► Is light on the fibre?
 - What is the optical power?
 - Optical transmission can be SM or MM
 - SM = Single Mode (long runs)
 - MM = Multi-Mode (short runs)
- Test Layer 2 Several areas
 - L1 in-band protocol; understanding this area allows operator to troubleshoot alarms and errors
 - IQ data is the actual data carried and can be analysed for performance such as interference (CPRI RF)

- Common Installation Problems
 - "Seeing what the RRH sees"
 - Fiber could be connected to the wrong CPRI port
 - Supporting proprietary CPRI interfaces
 - Distances between REC and RRH can be 100m+
- Common Equipment Problems
 - RRH will not communicate
 - Incompatible cable connections
- OVP Installation Problems
 - DC power wired incorrectly
 - **Fibers swapped/bent at LGX**
 - Incorrect alarm wiring

- External Problems
 - High RSSI from external interference
 - **GPS** signal is too weak
- Coax/antenna Installation Problems
 - **Cables for RRHs cannot be terminated in the field**
 - Up to 15 remote radios per site (5 per sector)
 - Loose/faulty antenna jumpers and/or connected

Typical test configuration for CPRI RF testing

Anritsu envision : ensure

Differences with Traditional RF

RF	CPRI
Analog	Digital
Absolute Measurements	Relative Measurements
dBm	dB
Specific Center Freq.	Base Band 0 Hz
Absolute Power levels	Relative Power Levels
Full Span capable	Max Span: Carrier BW +50%

Anritsu envision : ensure

Configuring CPRI link

Key CPRI Parameters

- Line Rate (rates 1 to 7 supported)
- AxC (Antenna Container: 0 to 10)
- CPRI BW (Bandwidth of LTE carrier)
- IQ Bit Width (10, 12, 15, 16)
- Reserve / Stuffing Bits (0 to 10)
- Aggregation (On / Off)

Note: Configurations can be different on UL & DL

CPRI Link

Anritsu envision : ensure

CPRI Digital Filter – Limitations for Interference Hunting

Key CPRI Parameters

- AxC = Antenna Carrier
 - **Location of IQ data for a given carrier/signal**
 - Though it's possible to combine two in one AxC
 - AxC mapping Mapping = 1:1 carrier/signal per AxC Mapping = 3:2 interleaved carrier/signals per AxC
 - AxC's can range from 1 up to 192
 - \oplus 1 \mapsto Option 1 and LTE 10 MHz
- CPRI BW = the bandwidth of the LTE carrier
 - LTE carrier bandwidth can be
 - ⊕ 1.25 MHz
 - 2,5 MHz

 - 10 MHz
 - 15 MHz
 1
 - 20 MHz

Key CPRI Parameters

IQ Bit Width or Sample Width

The CPRI standard has different IQ bit width lengths per frame: one I sample and one Q sample

- The standard has IQ bit width of 8 to 20 for the Downlink
 Most common are 10, 12, 15, 16
- The standard has IQ bit width of 4 to 20 for the Uplink
 Most common are 10, 12, 15, 16

Reserved/Stuffing Bits

Are vendor specific and used with Sample Width (IQ Bit Width) to complete the CPRI frame length.

Most common stuffing/reserve bit values are 0 & 6 for LTE

CPRI Aggregation

This refers to the aggregation of smaller carriers to make one large carrier within one AxC

/incitsu envision : ensure

SFP monitoring and alarm monitoring

Loss of Signal (LOS) Loss of Frame (LOF) LSS (Loss Sequence Synchronization)

/INFITSU 12/0	8/2015 01	:43:52 am					4	Measure
Ref Lvi -40.0 dB	M1 *0.0	LOS (DO dB @9.992 5	600 GHz	••	rai 🔵	SDI	CPRI M	lode
Ax C No	Alamis	S	FP 1			SFP 2		CPRI
u Line Rate	Signal Level			Signal Level	Signal Level			
4915.2 Mbit/s		Tx Power:	-2.575 di	Bm	Tx Pc	ower: N/A		
#RBW		Rx Power:	-10.017	dBm	Rx Pc	ower: N/A		Spectrum
30 kHz		•	Signal Loss			Signal	Loss	0
# УВW 300 Hz		•	LOS		0	LOS		Spectrogram
CPRI BW 20 MHz		•	LOF			LOF		
		•	LSS		\circ	LSS		Layer 2 Alarms
Traces A: Normal	Remote	е						
	SFP 1			SFP 2			SFP Data	
		•	Remote LO	s		Remot	e LOS	
		•	Remote LO	F		Remot	e LOF	
Sweep Continuous		•	RAI		0	BAL		
		•	SDI			SDI		
		•	Reset		\bigcirc	Reset		
Freq		Ampli	tude		BW	Measurer	ments	Marker

SFP monitoring and alarm monitoring – BTS Master 2 SFP slots

/INCIESU 12/08	/2015 01:43:12 am		X 🖸) ;	CPRI SFP Data
Ref Lvi -40.0 dB	LOS M1 *0.00 dB @9.992 50 Transceive	D LOF O	RAI 🔍 🛡	SDI CPRIN	Aode SFP Info
AxC No	Tansceive	SFP O			
0 Line Dete	SF	P 1		Compliance Info	
4915.2 Mbit/s	Wavelength	1310 nm	Wavelength	N/A	
#RBW 30 kHz	Bit Rate	2500 Mbps	Bit Rate N/A		
#VBW 300 Hz	SFP 1 Vend	or Information	SFP 2 Vendor Information		
CPRI BW 20 MHz	Vendor Name	LINKTEL	Vendor Name	N/A	
Traces	Status	1	Status	N/A	
<u>A: Normal</u>	Part Number	LX1033CDR	Part Number	N/A	
	Revision	1.0	Revision	N/A	
Sweep	Serial Number	1143305448	Serial Number	N/A	
Continuous	Product Date	140825	Product Date	N/A	Back
	Lot Code		Lot Code	N/A	-
Freq		ebu	BW	Measurements	Marker

/incitsu envision : ensure

SFP monitoring and alarm monitoring – BTS Master 2 SFP slots

/Inritsu envision : ensure

SFP monitoring and alarm monitoring – E-series Site Master 1 SFP slot

/incitsu envision:ensure

AcX Auto Detect mode (ERICSSON, ALU, HUAWEI)

Ancitsu envision : ensure

AcX Auto Detect mode (ERICSSON, ALU, HUAWEI)

Measurement Display Types

- Spectrum and / or Spectrogram is useful for intermittent signals
- Use the spectrogram to look for signals that change over time
 - Unstable regarding frequency and / or level
 - Passive Intermodulation
 - From a cell phone booster with insufficient input to output isolation
 - Common consumer grade equipment issue
 - **Temperature sensitive**
 - Sensitive to changing reflections
 - People
 - Cars
 - Etc

Parallel trace operations

/incitsu envision : ensure

Tune & Zoom functionalities

- Use case: Identification of narrow band interferers
 - Place marker on an off-center frequency interferer
 - Use "Marker Freq to Center"
 - Reduce span to zoom in on the interferer

Recording & Replay of measurement data

PIM detection via CPRI link

- "Shark Fin" shape is a usual indication for PIM
- IM 3 to IM 5 transition
- Turn OCNS on
 - **Does Uplink rise?**
 - Maintenance window

RX Diversity

- Diversity Testing
 - Compare Multiple Traces
 AxC 0 & AxC 1
- Multi Band Loading
 - **Compare Multiple Traces**
 - ⊕ AxC 0 & AxC 1 700 MHz
 - ⊕ AxC 0 & AxC 1 2100 MHz

Multiple AcX for Spectrum and Spectrogram measurements – Quad Display

/Inritsu envision : ensure

Multiple AcX for Spectrum and Spectrogram measurements – Dual Display

/Inritsu envision : ensure

