

Development of a Passive Intermodulation (PIM) Test System for the Chinese Space Industry

A 2 channel PIM tester for S-Band [~ 2.2 GHz]

Contents

Background PIM Basics Metallic Contacts Background PIM Basics Test Bed

Contents of this presentation

FHI RF Technology 2016

Background

PIM Basics

- Metallic Contacts
- Test system design

Background

Increasing Telecom Requirements

- Continuous increasing demands for higher data rates in Sat-Com systems.
- Resulting in more carriers and larger signal bandwidths.
- Compensate receiver noise power (kTB) with higher transmit power to maintain SN ratio at receiver input.

Background

Basic Satellite Operation

Contents **Background** PIM Basics Metallic Contacts Background PIM Basics Test Bed

Background

Basic Satellite Operation

Any practical system : Non Linear

$$I = a_0 + a_1 V + a_2 V^2 + a_3 V^3 + \dots$$

Background

Basic Satellite Operation

Any practical system : Non Linear

$$= a_0 + a_1 V + a_2 V^2 + a_3 V^3 + \dots$$

Generates Harmonics and

IM Products

The IM products distort the signals in the receive band

This presentation is property of DARE!! Projects © 1995 - 2015 DARE!! International

Transmit

Band

Receive

Band

PIM Basics

Sources of PIM

PIM sources:

Ferromagnetic materials

Metallic contacts

Voids or cracks discharges

Thermal effects

PIM Basics

Sources of PIM

Examples of Metallic Contacts:

Flanges

Tuning screws

PIM Basics

PIM at Metallic Contacts

METALA

Irregularities reduce the total area of contact.

Contaminant layers on the surface prevent the formation of Ohmic contacts.

Metallic Contacts

Various Sources

- Hard versus soft materials
 - Soft materials -> Lower PIM
- Thin versus thick oxyde layers
 - Thin Oxyde layers -> Lower PIM
- Cracks in the oxyde layers
 - Multi Material Junction -> Higher PIM
- Roughness of the contact area
 - Smooth contact area -> Lower Pim
- Contacting Pressure
 - Higher pressure -> Lower PIM

More background information

Phd Thesis Dr. Carlos Vicente

http://tuprints.ulb.tu-darmstadt.de/598/

Passive Intermodulation and Corona Discharge for Microwave Structures in Communications Satellites

> Vom Fachbereich 18 Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

> > Dissertation

von Dipl.-Phys.

Carlos Pascual Vicente Quiles geboren am 12. September 1976 in Elche

Referent: Korreferent: Korreferent: Prof. em. Dr. Eng. Dr. h.c. mult. H.L. Hartnagel Prof. Dr.-Ing. V. Hinrichsen Prof. Dr.-Phys. B. Gimeno Martínez

Tag der Einreichung:18. Mai 2005Tag der mündlichen Prüfung:29. June 2005

D17 Darmstädter Dissertationen

PIM Basics

Motivations to measure

- Many fundamentals of PIM remain unknown
- Extremely difficult to assess quantitatively
- No existing models
- Becoming more important for future satelite missions
- MEASURING is very important

S-Band High Power PIM Test bed Test process for PIM testing

- Combine the two test tones without generating PIM.
- Apply the two clean test-tones to the DUT
- Separate the test tones and the PIM band without generating PIM
- Display the PIM band on a suitable receiver or receiver.

S-Band PIM Test bed

Step 1: Combing two high power carriers

Input Diplexer

S-Band PIM Test bed

First test mode

- Transmitted test mode

 High power signals pass through the D.U.T.
 - At the output of the DUT the test tones PLUS PIM appear.
 - PIM Band of interest is the LSB (lower sideband)

S-Band PIM Test bed

Step 2: Measure in transmitted mode

S-Band PIM Test bed

Second test mode

- *Reflected* test mode
 - High power signals are applied to the D.U.T. input
 - At the input of the DUT reflected
 PIM products may appear
 - PIM Band of interest is the LSB (lower sideband)

S-Band PIM Test bed Step 3: Measure in reflected mode

Contents Background PIM Basics Metallic Contacts Background PIM Basics Test Bed

S-Band PIM Test bed The filters in the system are essential!

Contents Background **PIM Basics** Metallic Contacts Background **PIM Basics Test Bed**

This presentation is property of DARE!! Projects © 1995 - 2015 DARE!! International

S1.4

2.1

2.15

2.2

2.25

S-Band PIM Test bed

Practical realisation

CONFIGURATION #1: TRANSMITTED OUTPUT DIPLEXER BLOCK DIAGRAM (TRANSMITTED CLEANING TERMINATION BPE TRANSMITTED (OUTPUT 10.70 OUTPUT TRANSMITTED DUT OUTPUT DIPLEXER INPUT CABLE TO DUT COAX, LOAD BPF CABLE TO D 6 COAXIAL TERMINATION 81.43 CABLE TO DUT CABLE TO DUT INPUT DIPLEXER 8 24 96.27 100" = 2.5 meter INPUT DIPLEXER BLOCK DIAGRAM SEE SHEET 3 Ð APOLLO MICROWAVES LTD. TERMINATION HB SEE SHEET 3 B 18806 LOW PIM ASSEMBLY ONS ARE THE COAXIAL 7/16 F1 (INPUT) A RoHS 1-50 Guiping Wang F2 (INPL F2

This presentation is property of DARE!! Projects © 1995 - 2015 DARE!! International

Contents Background PIM Basics Metallic Contacts Background PIM Basics Test Bed

S-Band PIM Test bed

Some figures

• Input Diplexer: 255 lbs (116 Kg)

- Termination 85 lbs (37 Kg)
- Output diplexer: 264 lbs (120 Kg)

DARE!! On Site Delivery in August

On site installation August 2016 At CAST in Xi'an, Central China

DARE!! S-Band PIM Test bed

FHI RF Technology 2016

Thanks for your attention