The need for Low Power Ultra Reliable communication technologies for IoT

Testing Performance and reliability of IoT Devices and protocols

TUCANA

Agenda

- ✓ Setting the scene
- ✓ Connectivity options
- ✓ The need for testing the performance aspects of IoT devices/protocols with the focus on the challenges from a radio point of view.
- ✓ Practical testing of IoT devices
- ✓ Co-existence and interoperability testing
- ✓ Certification testing
- ✓ Requirements of the test system....

IoT..Setting the scene

MASTERS IN MEASUREMEN

Situating IoT

Domestic IoT:

- Pill box, freezer
- Thermostat
- Locks
- Personal area (fitness)

Industrial IoT:

- Windmill-parks
- Big structures (high rise buildings, bridges)
- Communal services
- Machine to Machine communication
- Medical

IoT Players

- End devices
- Alliances
- Certification labs
- Operators
- Gateways mfrs
- APP

- End device mfrs , large volumes very low cost , rely on chip-mfrs for certification
- Need to test RF in integrated design
- Operators want to test e-t-e
- Gateway Mfrs need to test and certify
- There are 1000's of devices that need to be certified. The certification test specifications prescribed by ETSI are costly so there is a need for low cost precertification methods.

Internet of Things (IoT) connectivity options

Technologies

Established technologies:

New emerging networking options such as Thread as an alternative for home automation applications

Whitespace TV technologies being implemented in major cities for wider area IoT-based use cases.

Requirements

Range, data requirements, security and power demands and battery life will dictate the choice of one or some form of combination of technologies.

key characteristics

Bluetooth Smart similar range to Bluetooth reduced power consumption small chunks of data

WiFi

The "Wi-Fi Certified" trademark can only be used by Wi-Fi products that successfully complete Wi-Fi Alliance interoperability certification testing. Frequency: 2.4GHz (ISM) Range: 50-150m (Smart/BLE) Data Rates: 1Mbps (Smart/BLE)

Frequencies: 2.4GHz and 5GHz bands Range: Approximately 50m Data Rates: 600 Mbps maximum, but 150-200Mbps is more typical

low-power operation high security robustness high scalability high node counts

Frequency: 2.4GHz Range: 10-100m Data Rates: 250kbps

Standard: GSM/GPRS/EDGE, UMTS/HSPA, LTE Frequencies: 900/1800/1900/2100MHz Range: 35km max for GSM; 200km max for HSPA Data Rates: 170kps (GPRS) upto 10Mbps (LTE)

key characteristics

PLUS

NFC

IPv6-based Low-power lireless Personal Area Networks Based on 6LowPAN, Frequency: 2.4GHz (ISM) IPv6 networking protocol Range: N/A complement to WiFi for use in a Data Rates: N/A home automation setup. Mesch nw self healing low-power RF comm. Techn. Frequency: 900MHz (ISM) home automation controllers and Range: 30m sensors Data Rates: 9.6/40/100kbit/s Optimized for communication of small data packets **NFC** is a set of protocols that enable Frequency: 13.56MHz (ISM) two electronic devices to establish Range: 10cm communication by bringing them Data Rates: 100–420kbps within centimeters of each other. Network-protocol instead of IoT Frequency: adapted and used over application protocol a variety of networking media defines encapsulation and header Range: N/A compression mechanisms. Data Rates: N/A

key characteristics

Wide-range technology range comes between WiFi and cellular. ISM bands, which are free to use without the need to acquire licenses. small battery

Frequency: 900MHz Range: 30-50km (rural environments), 3-10km (urban environments) Data Rates: 10-1000bps

TV White Space spectrum high scalability high coverage low power low-cost Frequency: 900MHz (ISM), 458MHz (UK), 470-790MHz (White Space) Range: 10km Data Rates: Few bps up to 100kbps

Sigfox and Neul equivalent wide-area network (WAN) applications low-power WANs bi-directional millions and millions of devices

Frequency: Various Range: 2-5km (urban environment), 15km (suburban environment) Data Rates: 0.3-50 kbps.

Performance testing IoT

The NEW requirement in IoT is a radio system that can do Long Range Low Power

- E-T-E performance of IoT eco system is depending on :
 - Radio performance
 - Protocol
- Radio performance aspects are
 - Radiated power , sensitivity
 - Power , battery
 - Distance
 - Interference aspects Co-excistance (Industrial Scientific Medical)
- Requirements of the test system:
 - Repeatability
 - Control of parameters
 - Over The Air testing
- Compatibility .. interoperability: KEY to the IoT concept

Performance testing IoT

Some of these technologies use mesh techniques. In order to improve the reliability, the mesh network needs to organize and repair itself—this needs to be tested/exercised.

- Practical testing of IoT devices can be challenging-
 - o Battery operated devices are often sealed, so no access to RF ports
 - o If devices do have RF connectors they are usually fragile and difficult to make reliable connections
 - o Conclusion test Over The Air

•

- o completely isolate from outside interference in order to get reliable, repeatable tests.
- Different technologies (BT, Zigbee, Thread) all operate in ISM band; Coexistence testing of these technologies is important

ETSI EN300 220 Lora WAN Certification

4.2.1.1 Frequency error or frequency drift 4.2.1.2 Average power/ 4.2.1.3 Effective radiated power 4.2.1.4.1 Frequency hopping spread spectrum devices (number of hopping channels, dwell time and Return Time) 4.2.1.4.2 Direct sequence or other spread spectrum than FHSS (Power density **Measurement**) 4.2.1.5 Transient power 4.2.1.6 Adjacent channel power for channelized equipment 4.2.1. 7 Modulation band-width 4.2.1.8 Unwanted emissions in the spurious domain 4.2.1.9 Frequency stability under low-voltage conditions (Applies to batteryoperated transmitters) 4.2.1.10 Duty cycle 4.2.1.11.1 Minimum transmitter off-time (Applies to transmitters using LBT) 4.2.1.11.2 Minimum listening time (Applies to transmitters using LBT)

ETSI EN300 220 Lora WAN Certification

4.2.1.11.3 Maximum dead time (Applies to transmitters using LBT)

- 4.2.1.11.4 Maximum transmitter on-time (Applies to transmitters using LBT)
- 4.2.1.11.5 Time-out-timer (in the frequency bands 433,050 MHz to 434,790 MHz or

869,7 MHz to 870 MHz)

4.3.2 Receiver sensitivity (Applies to receivers with LBT)

- 4.3.3 Receiver LBT threshold (Applies to receivers with LBT)
- 4.3.4 Adjacent channel selectivity (Applies to Category 1 receivers)

4.3.5 Blocking

4.3.6 Spurious response rejection (4.3.6 C Applies to Category 1 receivers E 5.1.4.5)

4.3.7 Receiver spurious radiation

ETSI EN300 220 Lora WAN Certification

Those tests should be done in

- -Full Anechoic room
- -Anechoic room with groundplane
- -Open Area Test site

ETSI Specification of Test Fixture to be used when DUT has an integrated small aperture antenna with no external 50 Ohm access

MASTERS IN MEASUREN

Why do you need to test?

Specific requirements of IoT communications systems

- reach/distance
- Low Power
- Battery live
- Sensitivity (noise floor)
- Reliability
- Infrequent communications

Testing implications

- Certification testing
- Functional testing
- Protocol level testing
- RF level testing
- Topologies
- Cost

Wireless Testing: Critical, Difficult

- Why is wireless testing critical?
 - To ensure reliability & quality of voice, video and delay-sensitive data services in the presence of noise, motion and multipath
- Why is wireless testing so difficult?
 - Engineers are unable to obtain repeatable results due to variables in the environment
 - Noise, motion and other channel conditions constantly change
 - Modern devices constantly adapt to these changing conditions

The market needs a *compact cost-effective* wireless platform that provides *repeatable reallife conditions* in labs around the world

Practical testing of IoT devices

the requirements of the test system

Multipath emulator introduces de-correlation bringing MIMO gains into a small anechoic testbed.

Wireless Mesh Test Configuration

Flexible configuration, can be used for:

- 2, 3 hop scenarios
- Routing flow manipulations
- Recovery from lost nodes/rerouting
- Link quality measurements

2-Hop Scenario: Perfect Routing Conditions

Link	Attenuation (dB)
A->C	0
A->B	63
B->C	63
B->D	63
C->D	0

2-Hop Scenario: Perfect Routing Conditions

STERS IN MEASUREMENT

3-Hop Scenario: Perfect Routing Conditions

Link	Attenuation (dB)
A->C	63
A->B	0
B->C	0
B->D	63
C->D	0

ERS IN MEASUREM

3-Hop: With variable flow

RECEDIS Thank you If you would like to see more please visit us on our booth

STUDIO 21 - MEDIA PARK IN HILVERSUM FHI SEMINAR - 12 APRIL 2016

