

Reiner Berchtold - Vitae

- Dipl. Ing. for Electronic Engineering at Technical University of Munich 1993
- With Spinner GmbH since 1995
- Today responsible for product marketing within communication division
- Heading 4.3-10 development project at Spinner

Phone: +49 89-12601-1239 Fax: +49 89 12601-1157

Mail: R.Berchtold@Spinner-group.com

Postal Address: Erzgiessereistrasse 33

D - 80335 München

Germany

Agenda

CONTENTS

HISTORY 7-16 AND 4.3-10

REQUIREMENTS

ACHIEVEMENTS

EXPECTATIONS AND AVAILABILITY

The History

7-16 - A few historical facts

- Findling plug (70 Ω) was introduced during the war early in the forties.
- In the 1950's Dr. Georg Spinner developed the 6-16 connector (60 Ω), forerunner of today's world-famous 7-16 (50 Ω)
- In the **1960's** a 50 Ω version was introduced and standardized under the name **7-16**, additional a 75 Ω version named **4.6-16** was established.

The History

7-16 - A few historical facts

- 7-16 connector is the most solid and robust connector of this size available in the market.
- With a coupling torque of 30 Nm an enormous outer contact pressure is practicable. It gives the connector its excellent Intermodulation properties.
- Basically 7-16 is a more than 60 years old connector system.

1990's

• 7-16 established as the .mobile communication connector'

1960's

• 7-16 was developed and standardized

1940's

· Findling plug

2000's

• 7-16 is produced in millions for the booming mobile communication market

Today

 Time for a new connector system?

The Presence

Connector Series 7-16

 7-16 connectors show an outstanding mechanical and electrical performance when tightened with 30 Nm, but:

In most countries less than

50%

of all installers use torque wrenches.

Up to

70%

of the reported PIM failures in the antenna feeder line are caused by insufficient torqued 7-16 connectors.

The Future

A new and innovative connector series

- The performance and reliability of mobile communication sites can be improved dramatically with a 'torque free' connector system.
- But how can a up-to-date mobile communication connector be realized?

Agenda

HISTORY 7-16 AND 4.3-10

REQUIREMENTS

ACHIEVEMENTS

EXPECTATIONS AND AVAILABILITY

The Future

Requirements

What are the requirements of today's and tomorrow's mobile communication systems?

Mechanical

- Low coupling torque
- Small size
- Low weight
- Tool free coupling machanism
- Protected RF contacts
- etc.

Electrical

- High return loss up to 6 GHz
- Low PIM
- High power rating
- High screening efficiency
- Low contact resistance
- 20 kA pulse current
- etc.

Environmental

- Operating temperature-55°C to +90°C
- IP68 for outdoor environment
- Low corrosion
- Life time 20 years
- Immune against vibration
- etc.

New connector needs to be better and smaller than 7-16 with ,foolproof' coupling

The Future

A new and innovative connector series

- New requirements need innovative solutions:
 - How to ensure the whole mobile communication industry can and will use the new connector?
 - It must meet the demands of all market players
 - Commercial availability
 - ⇒ Standardization
 - How to design the 'ideal' mobile communication connector?
 - By combining the most constructive connector manufacturers

Inside the Connector

How to overcome the high coupling torque of 7-16 and at the same time keep the mechanical performance?

Inside the Connector

The separation of the mechanical and the electrical reference plane allows low torque or even a tool free coupling with highest PIM performance.

Inside the Connector

Inside the Connector

The universal socket allows versatile coupling mechanisms.

Inside the Connector

Agenda

HISTORY 7-16 AND 4.3-10

REQUIREMENTS

ACHIEVEMENTS

EXPECTATIONS AND AVAILABILITY

Qualification

Test Program

Test	According to	Test	According to
 Visual inspection 	IEC 61169-1 9.1.2	 Screening efficiency 	IEC 62153-4-7
 Interface dimensions 	IEC 61169-1 9.1.3	 Power handling 	IEC 61169-1 9.2.2.4.2
 Operating current 	IEC 60512-5-1 and -2	 Operating temperature 	DIN EN 60068-2-1 and -2-2
 Working voltage 	IEC 61169-1 9.2.6	 Transportation temperature 	IEC 61169-1 9.4.4
 Outer conductor retention force 	IEC 61169-1 9.3.4	 Storage temperature 	IEC 61169-1 9.4.4
 Centre pin captivation force 	IEC 61169-1 9.3.5	■ IP68	IEC 61169-1 9.2.7
Mating cycles	IEC 61169-1 9.3.4	 Corrosion, mixed flowing gas 	IEC 60068-2-60
 Cable rotation 	IEC 61169-1 9.3.7.2	 Change of temperature 	IEC 61169-1 9.4.4
 Cable pulling 	IEC 61169-1 9.3.8	Dry heat	IEC 61169-1 9.6 resp.
 Cable bending 	IEC 61169-1 9.3.9		DIN EN 60068-2-2
 Cable torsion 	IEC 61169-1 9.3.10	Cold	DIN EN 60068-2-1
 Transient test 	IEC 62305-1	 Damp heat 	IEC 61169-1 9.4.3 resp.
Return loss	IEC 61169-1 9.2.1		DIN EN 60068-2-78
• PIM	IEC 62037 App. A2	Vibration	IEC 61169-1 9.3.3
		Shock	IEC 60068-2-27

The standardization of the 4.3-10 connector system (IEC 61169-54) is in progress with finalization expected in 2016.

Measurements

Insertion Loss

 Typical insertion loss figures below 0.04 dB at 6 Ghz measured on a mated adapter pair (N to 4.3-10)

Measurements

Return Loss

 Typical return loss figures below 36 dB up to 4 GHz with gated measurement on a mated adapter pair (N to 4.3-10)

Measurements

Passive Intermodulation

LTE2.6

All measurements show stable PIM levels below -166dBc at a carrier power level of 2 x 43dBm (20W)

Specification

Achievements

Comparison between connectors systems 7-16 and 4.3-10

Mechanical

- Packing density 1 inch (N type, 33% below 7-16)
- Low weight (reduction by 60% for 1/2" cable)
- Necessary coupling torque 5 Nm max.
- Two tool free coupling machanisms
- Protected RF contacts
- etc.

Electrical

- 32 dB return loss up to 6 GHz
- PIM -166 dBc max.
- Power rating500 W @ 2 Ghz
- 90 dB screening
- Low contact resistance
- 20 kA pulse current
- etc.

Environmental

- Operating temperature -55°C to +90°C
- IP68 for outdoor environment
- Low corrosion
- Life time 20 years
- Immune against vibration
- etc.

Agenda

HISTORY 7-16 AND 4.3-10

REQUIREMENTS

ACHIEVEMENTS

EXPECTATIONS AND AVAILABILITY

Expectations to 4.3-10

Comparison with 7-16 connector

- Reduction of space requirement by more than 30%
 - Allows high density equipment design
 - Reduced equipment weight and cost
- Electrical performance independent from coupling torque
- Reduction of weight by up to 60%
 - ⇒ Light weight modules because of low components weight and no need of thick-walled modules
- Screw, Push-Pull and Hand-Screw variants fit onto the same socket
 - ⇒ High flexibility in connector choice
- Interface contact areas protected from damage (unmated)
- Excellent performance under mechanical/environmental stress
- Superior PIM performance independent from torque or coupling mechanism
 - ⇒ Reliable electrical performance and less installation failures

Availability

4.3-10 products

Today, the complete portfolio for mobile communication is available on the market from several vendors.

Most Operators already approved 4.3-10 or are in the approval process.

- Base stations:
 - Ericsson
 - Nokia
- Antennas:
 - Kathrein
- Feederline equipment (connectors, jumper, combiner, splitter, etc.):
 - Spinner
 - Rosenberger
 - Huber+Suhner
 - Telegärtner

Usage Recommendation

Versatile Connector Variants

One universal socket fits to all plug types

- Screw type connectors show highest mechanical stability and lowest PIM risk under dynamic conditions.
 They are insensitive against accidental opening by torque forces on the cable.
- ⇒ It is Spinner's first choice for outdoor base stations with hard environmental conditions like vibrations, wind load, possible icing, etc.
- Push-Pull type connectors allow a free rotation of the cable and are therefore immune against any undesired opening by torque forces, even in combination with bending and/or pulling forces.
- ⇒ For applications where frequent and fast mating and unmating is required.
- Hand screw type are also designed to allow rotation of the cable. However, a hand screw coupling mechanism can be opened by applying a pulling and/or bending force together with a torque force.
- ⇒ Favored in applications with stable conditions like indoor coverage DAS systems.

HIGH FREQUENCY PERFORMANCE WORLDWIDE

WWW.SPINNER-GROUP.COM

SPINNER portfolio

4.3-10 connector specification supports three coupling mechanism

Hand Screw Type

Screw Type

Push-Pull Type

Comparison with 7-16 Connector

- 33% higher port density due to compact design.
- Weight reduction by approximately 60% (compared to a 7-16 connector for 1/2" cable)
- The universal socket allows versatile coupling mechanisms.

Comparison with other connector types

Electrical and mechanical data of SPINNER connectors

	Type N	Type 4.1-9.5	Type 4.3-10	Type 7-16
Nominal impedance	50 Ω	50 Ω	50 Ω	50 Ω
Cut off frequency	19 GHz	14 GHz	13 GHz	8.3 GHz
Intermodulation (IM3) 2 x 20 W	typ155 dBc	typ165 dBc	typ166 dBc	typ165 dBc
Insulation resistance*	≥ 5 GΩ	≥ 5 GΩ	≥ 5 GΩ	≥ 10 GΩ
Proof voltage at sea level	2.5 kV	2.5 kV	2.5 kV	3 kV
Working voltage at sea level	1.4 kV	1.7 kV	1.8 kV	2.7 kV
Power rating	450 W at 1 GHz 300 W at 2 GHz	650 W at 1 GHz 450 W at 2 GHz	700 W at 1 GHz 500 W at 2 GHz	1,200 W at 1 GHz 850 W at 2 GHz
Contacting outer conductor	Face contact	Face contact	Contact bushing	Face contact
Coupling mechanism	screw	screw	screw, push-pull, hand screw	screw
Coupling torque	3.0 Nm	10 Nm	5 Nm (screw only)	30 Nm
Proof torque	4.0 Nm	15 Nm	7 Nm (screw only)	55 Nm
Tensile strength of coupling mechanism	450 N	550 N	450 N	1,000 N
Mechanical lifetime (operations)	500	500	500	500
Packaging density	1 inch 25.4 mm	1 inch 25.4 mm	1 inch 25.4 mm	1.26 inch 32 mm
Temperature range	-67 to 311 °F -55 to +155 °C			
Degree of protection (mated)	IP68	IP68	IP68	IP68

SPINNER portfolio

SPINNER products based on the new 4.3-10 connector system

Product	Remarks
MultiFit™	Plug/socket/right angle plug screw, hand-screw, push pull
Fixed connector	Panel mount/bulkhead
Calibration Kits	Test & measurement
Adaptor N to 4.3-10	Standard and measurement
Adaptor 7-16 to 4.3-10	Standard and measurement
Jumper cable	Plug/socket/right angle plug

