# Device Characterization and modeling



Remi Tuijtelaars bsw TestSystems & Consulting bv





DE BASILIEK VEENENDAAL 18 APRIL 2018





ENENDAAL

IB APRIL

#### Content

- Introduction
- DC characterization/modeling
  - Pulsed IV
- Capacitances
- AC small-signal measurements
  - For modeling
  - For verification
- Noise and noise parameters
- Power and load-pull measurements

- Design Cycle
- Iterative process
- Need good models and measurement capabilities
- Gain experience: competitive advantage!







![](_page_3_Picture_1.jpeg)

![](_page_3_Picture_2.jpeg)

- **bsw** TestSystems and Consulting
- Measure: Turn-key meas. systems
- Build:

component advice and sales

• ok?:

consulting & training services

• Pre-dominantly in μwave/RF

![](_page_3_Figure_10.jpeg)

- Semiconductor active device 'compact' model:
  - Set of equations or circuit topology
  - Set of parameters
- To create a compact model for use:
  - Choose the topology ('Model')
  - Perform many measurements over wide operating range
  - Calculate or extract a basic set of parameters
  - Improve by fitting (all) parameters for good agreement between measurement and simulation.

![](_page_4_Picture_9.jpeg)

 $i_T = c_{10} \frac{\exp(v_{B'E}/V_T) - \exp(v_{B'C}/V_T)}{O_{TT}}$ 

![](_page_4_Picture_11.jpeg)

![](_page_5_Picture_0.jpeg)

- Typical workflow to generate a compact device model:
  - DC characterization/extraction
  - C(V) Measurements
  - Transient or AC small-signal measurements
  - Low frequency Noise or noise parameters
  - Large signal, power and load-pull measurements

![](_page_5_Picture_8.jpeg)

- **DSW** TestSystems & Consulting
- Semiconductor active device 'behavior' model:
  - Huge database of measurements at all modes of operation
  - Set of equations that 'summarize' the behavior, e.g. polynomials
  - Set op parameters for the equations (e.g. X-parameters)
- To create a behavior model for use:
  - Perform many measurements over operating range of interest
  - Store as database or fit parameters for the equations
- Model verification is inherent

![](_page_6_Figure_10.jpeg)

![](_page_7_Picture_1.jpeg)

![](_page_7_Picture_2.jpeg)

- Many different Models for
  - Many different applications
    - Digital ⇔ analog
    - Low ⇔ high voltage/current
    - Low  $\Leftrightarrow$  high  $\Leftrightarrow$  very high frequency
  - Many different devices and technologies
    - Field-effect, bipolar transistor
    - Si, GaN, GaAs, InP, ...
- Foundries supply active device models
  - For standard applications

![](_page_8_Picture_0.jpeg)

RF 2018 TECHNOLOGY DAYS VEENENDAAL 18 APRIL

# DC Measurements

- Collect DC curves
- Extract parameters
- For all devices and applications
- Equipment:
  - Power supplies and IV meters
  - Curve-tracer
  - SMU's

![](_page_8_Picture_10.jpeg)

![](_page_8_Picture_11.jpeg)

![](_page_8_Figure_12.jpeg)

![](_page_8_Picture_13.jpeg)

#### Device issues on DC

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

- Temperature increase
  - Isothermal measurements?

![](_page_9_Figure_5.jpeg)

• Traps, memory effects

![](_page_9_Figure_7.jpeg)

Vds (V)

Vds (V)

![](_page_10_Picture_0.jpeg)

- Select proper quiescent point
  - low/current/low voltage
  - high current/low voltage
  - high voltage/low current

![](_page_10_Figure_5.jpeg)

е

# Pulsed IV Measurements

![](_page_11_Picture_1.jpeg)

- Hardware with
  - 2 power supplies per channel
  - Sync'd switching between channels
- For power and switching devices
  - GaN
- Issue's:
  - Pulse shape
  - Short pulses are ~ RF

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_11.jpeg)

# Capacitances

- Capacitances are linked to charges
  - Voltage dependent
- For all devices and applications
- Measure with
  - CV meter
  - from small-signal S-parameters

![](_page_12_Figure_7.jpeg)

# AC Measurements

- Measurements to determine:
  - Transit/delay times
  - Capacitances
  - Parasitic R's
  - Package model, RLCtl's
- Needed in many models
- Verification of analog, small-signal behavior
- Equipment:
  - Dedicated test equipment
  - Vector Network Analyzer up to mmWave frequencies!

f<sub>T</sub> (GHz)

![](_page_13_Figure_11.jpeg)

Moss, Vb=0.01

10

f (GHz)

VBE

100

![](_page_14_Picture_0.jpeg)

# Pulsed S-parameters

- S-parameters
  - in sync with PIV
- PIV-S issue:
  - Dynamic range

![](_page_14_Figure_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Figure_8.jpeg)

![](_page_14_Figure_9.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

# Low frequency noise

- Low frequency noise
  - 1/f noise
  - Channel noise
- Needed for
  - low noise, analog devices
  - Process control
- Equipment:
  - Dedicated setup

![](_page_15_Figure_11.jpeg)

![](_page_15_Picture_12.jpeg)

# Noise Figure

- Signal to noise ratio degradation
- Equipment:
  - Sensitive receiver: NFM, SA, VNA

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

# **Noise Parameters**

- For verification:
  - Quality of modeling
  - Quality of device operation
  - Quality of processing
- Needed for
  - low noise, analog RF/μwave devices
- Equipment:
  - Dedicated setup
  - Measure S+N

![](_page_17_Picture_11.jpeg)

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

![](_page_17_Picture_14.jpeg)

![](_page_17_Picture_15.jpeg)

#### ts TestSystems & Consulting

Probe

Airline

![](_page_18_Picture_1.jpeg)

# Large Signal measurements

- Device excitation to the max
  - Clipping of waveforms
  - Increased distortion: H2, IM3, ACPR
- Difficult for compact model
  - Switch to behavior model
- Follow application
  - Optimize source/load impedances for best operation → use Impedance Tuner

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

![](_page_19_Picture_0.jpeg)

# Source/Load-pull

- Large Signal measurement equipment:
  - Tuners
  - VNA
  - Amplifiers
  - Power meter
- Addressing accuracy:
  - Scalar LP: low
  - VNA based LP: good

![](_page_19_Picture_10.jpeg)

![](_page_19_Figure_11.jpeg)

![](_page_19_Figure_12.jpeg)

![](_page_20_Picture_0.jpeg)

#### Trends

- Smaller nodes become more difficult to model
  - Lower voltage/current
  - Higher frequencies
  - Importance of noise
- Even digital cells require more extensive analog design
- Increased use of behavior models for demanding applications
- New technologies entering old design area's
  - E.g. GaN for switched mode power convertors
- 5G boost µWave/mmWave applications

![](_page_21_Picture_0.jpeg)

## Conclusion

- A Birds perspective is given about
  - Active device model types: Compact an Behavior
  - Characterization/measurement techniques for modeling: from DC to daylight
- The modeling work extends further into area's of
  - Lower power (DC)
  - Higher power (DC&RF)
  - Higher frequencies
  - Complexer applications
- Trend is towards an increase of interest and need for modelling and characterization of active devices