MS2760A

a new approach for mm-wave and 5G spectrum measurements

RF Technology Days 2018

Ferdinand Gerhardes EMEA BDM

April 2018

Agenda

- Anritsu SPA product portfolio
- **▶** MS2760A feature overview
- **▶** What is NLTL? The magic of NLTL
- NLTL in a SPA (block diagram)
- Pros and cons of MS2760A
- Competitive positioning
- Using the MS2760A

Perfect Complement to Anritsu SPA portfolio

Anritsu Spectrum Analyzer Family

Full SPA Product Portfolio

MS2830/40/50A

- Full featured signal analysis in the lab up to 43 GHz (1 GHz)
- Up to 300 GHz with external mixers

MS2720T

- Full featured spectrum analysis in the field
- ▶ Up to 43 GHz

MS2710xA

- Monitoring, Multilateration, Demodulation
- ► Ext. SW Packages
- ► Up to 6 GHz

MS2760A

- mmWave spectrum analysis
- ➤ 32, 44, 50, 70, 90, 110 GHz solutions for the lab, field or manufacturing line

Target Markets

Emerging mmWave market

- **▶** Users making basic spectrum measurements from 9 kHz up to 110 GHz
 - ► 5G: 28, 39, 60 GHz
 - ► Microwave Radios: 70/80 GHz, 90 GHz
 - ► IEEE 802.11ad (WiGig): 57 66 GHz
 - ► Automotive Radar: 76 81 GHz
 - Satellite: 27 40 GHz (Ka band), 40 75 GHz, (V band)
 - ► Electronic warfare: 40 75 GHz (V band)
 - ► SRW and ISM Devices: 45, 60, 75, 92 GHz
 - ► TSCM: Any frequency

Emerging mmWave market

mmWave Trade-Offs

$$FSPL = \left(\frac{4\pi df}{c}\right)^2$$

Where:

d = the distance from the transmitter (meters)

f = the signal frequency (hertz)

C = the speed of light in a vacuum

MS2760A Features

Introducing MS2760A Spectrum Master

TECHNOLOGY DAVE VEENENDAAL 18 APRIL

Ultraportable USB-powered Spectrum Analyzer

- FFT analyzer
- ▶ 9 kHz up to 110 GHz
- **→** 32, 44, 50, 70, 90, 110, 125 GHz models
- **★** ±0.5 dB amplitude accuracy, typical
- 7 seconds to sweep 70 GHz
- > 100 dB dynamic range up to 110 GHz

- Quad Core i7 CPU or better.
- Windows 7, 8.1 or 10 (64-bit), 16 GB RAM, USB 3.0
- Sweep speed depends mainly of number crunching power of PC/Laptop

Features

- Spectrogram with time markers
- Zero Span with Time Gating
- Sweep Time boost due to image reject switch off
- POI improvement by sweep time increase
- Triggers: Video and External
- Trace Math and Functions
- Noise and Counter Markers
- Masks and Limit Lines
- Measurement Functions
 - Channel Power
 - OccBw
 - ACLP
 - Harmonics
 - Burst Power

Non Linear Transmission Line (NLTL) What is this?

Principle of Nonlinear Transmission-Line (NLTL)

- **Shock Line Technology Benefits**
 - **Smaller size**
 - Wider frequency range
 - **Improved measurement stability**
 - **Longer intervals between calibrations**
 - Better measurement accuracy and repeatability
 - Lower cost of test

NLTL-Based Sampler RD-Based Sample

envision: ensure

phase

Frequency (GHz)

120

Principle Nonlinear Transmission-Line (NLTL) based Sub-Harmonic Sampler

- Anritsu VNA/SPAs incorporate patented NLTL technology made at an in-house chip fab.
 - ► Used in sampling receivers to measure amplitude and phase of the VNA stimulus.
 - ► Generates power for VNA source and RX LO signals.

Principle of Nonlinear Transmission-Line (NLTL)

- → A uniform Non-Linear-Transmission-Line (NLTL) is a high-impedance line loaded periodically by reverse biased Schotty diodes serving as voltage-variable capacitors.
- Under reverse bias, a diode behaves as a non-linear capacitance
- Strong input signals will generate harmonics and mixing products of the applied input signal
- ▶ The NLTL cell consists of a diode connected between the center conductor and ground at the junction between two sections of CPW.

[2]

Principle of Nonlinear Transmission-Line (NLTL)

▶ NLTL form a propagation medium whose phase velocity and thus, time delay, is a function of the instantaneous voltage.

Principle of Nonlinear Transmission-Line (NLTL)

- ▶ For a step-like waveform, the trough of the wave travels at a faster phase velocity than the peak
- ▶ This results in compression of the fall time and as a result, the formation of a steep wave front that approaches that of a shock wave.

Principle of Nonlinear Transmission-Line (NLTL)

- ◆ At high negativ voltages, the capacitance of the diodes is small and the velocity is fast. If the input voltage waveform has a negativ going function, the first part of the wave propagate slower as the following parts.
- **▶** So the fall time is becoming shorter and shorter as the wave propagates along the line.

Principle of Nonlinear Transmission-Line (NLTL)

- ◆ At high negative voltages, the capacitance of the diodes is small and the velocity is fast. If the input voltage waveform has a negative going function, the first part of the wave propagate slower as the following parts.
- **▶** So the fall time is becoming shorter and shorter as the wave propagates along the line.

NLTL in a spectrum analyzer

MS2760A basic function principle

- Direct ADC sampling for 9 kHz to 24.5 MHz
- Conventional mixer used for 24.5 MHz to 6.15 GHz without preselection filtering
- ▶ NLTL sampler-based conversion for 6.15 125 GHz in a customized MMIC
- unique software algorithms to minimize image responses which may appear under certain use cases when wideband modulated and multi-tone signals are being analyzed.

Stepped FFT frequency representation

Stitching together FFTs to cover span

Stepped FFT frequency representation

▶ To improve capturing transient events, user can select either automatic (min.), or set minimum capture time and image reject for each 20 MHz wide capture

TECHNOLOGY DAYS VEENENDAAL 18 APRIL

High side / low side spur rejection

- ▶ Low-side LO conversion: $f_{LO} < f_{RF}$ High-side LO conversion: $f_{LO} > f_{RF}$
- **▶** Take a HIGH SIDE and a LOW SIDE measurement compare and take the min value at each point sample and display the results

TECHNOLOGY DAYS VEENENDAAL 18 APRIL

Impact on frequency hopping signals

Every trace is a comparison of a HIGH SIDE and a LOW SIDE sample to remove unwanted images and spurs

Applications

MS2760A Advantages

R&D

- •Improve measurement repeatability by measuring closer to your DUT
- Reduce uncertainty and loss by eliminating cables
- •Increase productivity affordable option for multiple labs / groups that must share equipment
- •Save time leave it in the chamber for environmental or RF testing

Manufacturing

- Priced for scalability
- •SCPI programmable for easy automated test systems
- •Improve product quality/reliability by carrying over more R&D tests to the production line

Field

- •Ultraportability helps minimize size of equipment required to carry
- Most affordable option for mmWave test in the field
- •Extendable up to 20 meters for remote monitoring

On-Wafer spectrum and CP measurements

Forget the cables and take the measurement right where you want it with the MS2760A

Even connect the MS2760A directly to a wafer probe!

The Ultraportable Spectrum
Master is even equipped with
mounting holes for
connection to various
surfaces

Simultaneous VNA and Spectrum Analyzer On-wafer Measurements to 110 GHz

- NLTL module direct connect to probe.
- Spa measurements thru 10-110 GHz Anritsu coupler.
- ► Full band sent to Spa through V connector and 10-12 dB coupled port.

TECHNOLOGY DAYS VEENENDAAL 18 APRIL

On-Wafer spectrum mm-wave multiplier measurement

TECHNOLOGY DAYS VEENENDAAL 18 APRIL

On-Wafer spectrum mm-wave multiplier measurement

TECHNOLOGY DAYS VEENENDAAL 18 APRIL

On-Wafer spectrum mm-wave LO measurement

On-Wafer spectrum mm-wave LO measurement

Car Radar FMCW measurements

Live DemoMS2760A

envision: ensure