Quantum bits and RF technology

Raymond Schouten

QuTech institute, location: Delft University of Technology

A Quantum Computing lab:

QuTech is a research institute combining science and engineering founded by Delft University and TNO

Main industrial partners are: Intel and Microsoft

Government: Economic affairs & education

QuTech: around 220 persons, 12 labs. Research, theory and computer architecture groups

In the lab: a measurement setup

In this setup the behaviour of single electrons is controlled and measured, enabling quantum operations

One floor down: **Cooling machine to 20** milliKelvin (-273°c)

XL.

Chip

Quantum Physics

In the cooling machine: temperature stages

Typical cooling power: ~ 1 W at 4 K, but only ~ 1 mW at 20mK

[Picture courtesy: Bluefors]

In the cooling machine, at 20mK: a PCB with a chip

Chip, made in cleanroom

PCB 64 x 35 mm, 8 layer FR4 10 RF lines (top & bottom)

- 33 d.c. lines
- 9 Bias Tee's
- 4 LC tank circuits (explained later)

On the PCB at 20mK: a chip (spin qubit lab, Lieven Vandersypen)

On the chip: quantum physics (if all is tuned well)

Quantum mechanics, keyword 1: Superposition

Superposition is a "one-particle" property. Superposition: A particle being in all possible states **simultaneously**

Example: For the spin of an elektron this can be described as:

Spin could be up

Spin Could be down

Superposition: Spin is up and down at the same time !!

The particle is in a superposition until a readout is performed

picture from: Nederlands tijdschrift voor Natuurkunde

Quantum bits, superposition representation

The basic unit of a quantum computer is a quantumbit (qubit) any state in a quantum two-level system This can be represented by a vector.

(Classical bits can only have 0 or 1 as a state)

In practice a qubit state setting (vector position) also changes uncontrollably in time (noise, drift) This is called <u>decoherence</u> and limits the use.

Error correction scheme's have been developped Feasible from >99% fidelity up

Bits vs. quantum bits, advantage of superposition

• Requires 2^N runs

Bits vs. quantum bits, advantage of superposition

Quantum algorithm using quantum bits:

- Requires only a single run \Rightarrow exponential speed-up
- But how to read-out a superposition ? clever theorists found some ways

Quantum mechanics, keyword 2: Entanglement

Entanglement is a characteristic of two or more particles. Particles can be brought in a interaction that couples their states

For this entangled pair: We do not know the state of each particle but we do know they are opposite

Measuring one, immediately changes the state of the other !

This is still possible when the particles are separated on opposite sides of the universe (Without environmental interaction)

QuTech, optics lab Quantum communication (Ronald Hanson)

1.3 km distance entanglement demonstrated by this team.

Possibilities for safe key distribution using photons send over fibers. The key cannot be intercepted as this removes the entanglement.

Paper: Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. (B.Hensen et al.)

Quantum bits can be created in physical structures like:

(Just like classic bits are created in transistor circuits)

QuTech research groups cover four fields of interest

<u>Manipulating single electrons</u>

One-dimensional nanostructures

Electronic spins In nanostructures

<u>Manipulating flux</u> <u>Optics (photons)</u>

Superconducting circuits

NV centers In diamond

Relating to the following applications:

Storage	Computing	Communication
Topological Quantum computing	Fault-Tolerant Quantum Computing	Quantum Internet

(superconducting circuits lab, Leo Di Carlo)

We first need a system that "holds" our qubit

Now make the energy levels *low enough* to see **quantised** energy steps

Why microwave frequencies + cryogenic temp?

Note: We add a **non-linear** inductive element (named SQUID) to be able to make the separation of the states **unequal** and to tune the resonator (using <u>flux bias</u>)

Figure 5.3: Microscope image of the device. Bottom two ports are used to measure transmission of the feedline. Each transmon qubit is coupled to an individual resonator for readout and a quantum bus to couple the qubits (blue inset). The qubits consists of two aluminum islands and are tuned by changing the flux in the SQUID loop (red inset).

Building a Quantum Computer, 17 qubit, low temperature part

Building a Quantum Computer,

Test&Measurement needs for 17 qubit, superconducting circuits lab

Building a Quantum Computer, T&M (room temperature) needs for 17 qubit

QuTech T&M
developmentLow latency AWG in a feedback control loopImage: Control loop(application: error correction)Measurement
(RF-readout)Analysis and
decisionSelected feedback signals
I quadrature

QuTech T&M development

Cryo-CMOS, 6GHz tunable LC Oscillator

Delft, electrical engineering dept. (Masoud Babaie, Fabio Sebastiano)

RF measurement technique example: Reflectometry

The chip from our introduction (at 20mKelvin) :

One electron passing by results in 1% change in our sensor resistance

Problem: we want to detect the steps at a higher rate (ideally up to 10MHz). However, roomtemperature based readout from this $25k\Omega$ sensor (1mV max bias) via 3 meter wire and filters (capacitance) is technically limited to approx. 100kHz.

RF measurement technique example: Reflectometry

Approach:

We make the sensor resistance and the stray capacitance of the bonding pad part of an LC resonator by adding a lumped element inductor. Within the resonance bandwidth this results in an impedance transformer that we design for getting 50Ω

RF measurement technique example: Reflectometry

Signal levels:

RF-reflectometry example, signal to noise ratio

For a 10MHz bandwidth: S/N = 9:1 (power ratio)

Reflectometry readout implementation example: (40MHz-1.5GHz)

Roundup, are we done yet ?

(What growth is expected and what is needed for applications)

Summary

Quantum Mechanics offers weird but useful tools: *superposition* and *entanglement* Quantum Computing offers *unique speed-up* possibilities for certain computational areas.

Quantum Networks offer the possibility for a *perfectly safe communication* channel

High-end T&M equipment is used extensively in Quantum research
World-wide interest in Quantum Computing gives a boost to research
Expected upscaling of quantum circuits asks for dedicated scalable T&M

End of presentation