

Methods for Wireless Testing of Phased-Array Antennas

Anouk Hubrechsen, ANTENNEX B.V.

X ANTENNEX

Integration antennas and RFICs

CITC

Eindhoven University of Technology

NXP

"Integrating antennas can change the behavior of the RFICs"

M. de Kok, et al., "A Review of PA-Antenna Co-design: Direct Matching, Harmonic Tuning and Power Combining," EuCAP 2022

What if there is no RF input?

NXP radar

Pharrowtech EVK (V-band)

Anechoic chamber

"Measurement errors easily occur when the antenna gain and radiation path ANTENNEX are not exactly known."

FECHNOLOGY EVENT

18 APRIL 2024 FHI Leusden

Radiated PSD of integrated antenna system

"Measuring multiple channels for a wide frequency range and high spatial resolution can take weeks"

"Measuring a pattern is important, but we also want..."

Transmitting

Total radiated output power, Power Spectral Density, IIP3, OIP3, ACPR, Power-added efficiency, Drain efficiency, Power gain, PAPR, P1dB, Spectral regrowth, intermodulation products, Radiated and in- and out-of-band emissions, harmonic distortion, EVM, etc..

Receiving

Receiver gain, Linearity, IIP3, IIP2, P1dB, Efficiency, harmonic distortion, in- and out-of-band emissions, noise figure, etc..

The effect of imperfect hardware

1.5

0.5

-0.5

-1.5

0.5

0

-0.5

-1.5

Slide credit to **Thomas Eriksson**

Outline

- Background
- Reverberation Chamber
- Measurement methods and examples
- New measurement methods
- Other applications
- ANTENNEX

Reverberation chamber

"Over-the-air equivalent of a coaxial connector"

Reverberation chamber

Integrating sphere

Illumination from all sides

Steps of 3°

Statistically uniform field

"Sensitivity to positioning removed"

Uncertainty

Standard deviation taken over measurements from different:

- Days
- Antenna positions
- Calibrations

45.2 m³ 400 MHz – 30 GHz (rough estimate)

<1 m³ <20 GHz to >140 GHz

Reverberation chamber benefits

- Flexibility in positioning
 - On average uniform and isotropic field
- Fast
- (Almost) independent of form factor
- Independent of external influences
- Scalable for high frequencies

Outline

- Background
- Reverberation Chamber
- Measurement methods and examples
- New measurement methods
- Other applications
- ANTENNEX

Radiated PSD of integrated system

PSD-based measurements

Transmitting

- Total radiated power
- ACLR/ACPR
- Efficiency (PAE)
- Compression
- IM
- Harmonics
- etc...

Receiving (limited by DUT)

- Efficiency
- Receiver gain
- OOB
- IIP3
- etc...

Outline

- Background
- Reverberation Chamber
- Measurement methods and examples
- New measurement methods
- Other applications
- ANTENNEX

Antenna noise temperature

$$T_{A} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} R(\theta, \varphi) T(\theta, \varphi) sin\theta d\theta d\varphi$$

Antenna noise temperature

$$T_{A} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} R(\theta, \varphi) T(\theta, \varphi) sin\theta d\theta d\varphi$$

Integrate over a sphere the radiation pattern and the noise temperature of the environment

Wireless noise source

1. Create two noisepower levels

Wireless noise source

- 1. Create two noisepower levels
- 2. Measure received power
- 3. Estimate NF and

gain

Wireless noise source

Result @ Ka-band

Expanded uncertainty (95% confidence): OTA 0.37 dB; Reference 0.25 dB

19/4/2024

A. Hubrechsen, T. Stek and A. B. Smolders, "Simplified Over-the-Air Noise Figure Measurement Method for Reduced Uncertainty," IMS 2023

ANTENNEX 2024 TECHNOLOGY EVENT 18 APRIL 2024 FHI Leusden

NF of an integrated antenna

FHI Leusden

www.antennex.tech | info@antennex.tech

Visit us at Booth #13

18 APRIL 2024

FHI Leusden

