Recent enhancements in RF On-Waver probe tip calibrations

Ruben Zowada

Lead Staff Applications Engineer

Agenda

- Basic Calibration techniques challenges
- Augmented Probe Align
- New Least Square Calibration Algorythm
- Second Tier calibrations

SOLT Calibration

- Oldest calibration technique
- All standards must be perfectly known
- Cal Kit Definition required
 - Open has capacitance (often negative)
 - Short and load have inductance
 - Mathematically over-determined
- Not easy to validate

SOLT is sensitive to Probe Placement

SOLT is sensitive to Overtravel/Skate

 Incorrect skate will have a frequency dependent effect on the reflection measurement

0

0

LRRM Calibration

- Line-Reflect-Reflect-Match Calibration
- Uses same Standards as SOLT

Thru (line) delay, Match resistance must be known

 \rightarrow Less sensitive to probe placement errors

Measurements referenced to trimmed resistor

Alignment marks on calibration substrates

 $\begin{array}{cccc} \mathbf{Y} & \mathbf{Y} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{K} & \mathbf{J} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{K} & \mathbf{J} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{K} & \mathbf{J} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{X} & \mathbf{X} \end{array}$ Figure 1: Alignment marks

Figure 2: Images showing correct alignment and placement of probe tips
Initial contact
Final contact

Alignment marks on calibration substrates

Figure 1: Alignment marks

Figure 2: Images showing correct alignment and placement of probe tips

Figure 2: Images showing correct alignment and placement of probe tips

Alignment marks on calibration substrates

Figure 1: Alignment marks

Figure 2: Images showing correct alignment and placement of probe tips of both GSSG and GSGSG ACP style probes.

Microscopy impacts

When the probes are lifted up and out of focal plane, it can be difficult to anticipate their landing point.

Microscopy impacts

→ Augmented (Reality) Alignment!

Augmented Alignment

- Allows calibration of 1 port THz setups using a series of reflects
- This method is an extension of a standard SOL One-port calibration algorithm.
- Instead of generating 3 equations to solve with 3 standards for 3 unknown VNA error terms, the method generates N (> 3) equations to solve for 3 unknown errors.
- Still requires ideal knowledge of the standards

- Allows calibration of 1 port THz setups using a series of reflects
- This method is an extension of a standard SOL One-port calibration algorithm.
- Instead of generating 3 equations to solve with 3 standards for 3 unknown VNA error terms, the method generates N (> 3) equations to solve for 3 unknown errors.
- Still requires ideal knowledge of the standards

Standard	a0	a1	a2	a3	р0	p1	
OPEN	1.00944319E+00	-1.15756346E-13	1.34286786E-25	-7.21562295E-38	4.32761411E-02	-2.90863975E-12	
D01	1.04570896E+00	-2.65159231E-13	2.91071551E-25	-1.32362676E-37	6.36302306E+00	-4.30602966E-12	
DO2	1.04901269E+00	-2.98233890E-13	3.07983872E-25	-1.37981504E-37	6.46146020E+00	-5.78103774E-12	,
DO3	1.28557296E+00	-1.15025909E-12	1.27017304E-24	-4.99908996E-37	6.52145556E+00	-7.20564132E-12	
DO4	9.70059866E-01	-1.54825828E-13	1.98079888E-25	-1.23394033E-37	6.50497371E+00	-8.54224103E-12	
SHORT	1.38501280E+00	-1.50735718E-12	1.84183366E-24	-7.84879380E-37	3.32051378E+00	-3.08610129E-12	
DS1	1.33137639E+00	-1.37756702E-12	1.71216357E-24	-7.52486425E-37	3.34310419E+00	-4.51002353E-12	
DS2	1.24652214E+00	-1.12899918E-12	1.44393520E-24	-6.62785123E-37	3.29575144E+00	-5.80282772E-12	
DS3	1.20186538E+00	-1.01966090E-12	1.33606950E-24	-6.37041925E-37	3.26877676E+00	-7.12921784E-12	
DS4	8.12522097E-01	2.32770428E-13	4.01969157E-27	-2.02691180E-37	9.55173334E+00	-8.57446045E-12	

12/6/22 Comparison of Ideal Standard Behaviors, ISS172-885 & T1100 Probe: DMPI (black line) vs Parameterized

-0.5

-1.5

[rad]

-2

. 750

800

850

900

Freq [GHz]

950

1000

1050

1100

FECHNOLOGY EVENT 18 APRIL 2024 FHI Leusden

750

[dB]

Mag: [S, DS1, DS2, DS3, DS4]

S

850

• DS2

. DS4

800

DS1 .

DS3

900

Freq [GHz]

Phase: [S, DS1, DS2, DS3, DS4]

950

1000

1050 1100

ACTOR™

2024

		-7.20564132E-12	6.52145556E+00	-4.99908996E-37	1.27017304E-24	-1.15025909E-12	E+00
750 800 850 900 950 1000 Freq [GHz]		-8.54224103E-12	6.50497371E+00	-1.23394033E-37	1.98079888E-25	-1.54825828E-13	6E-01
Phase: [O, DO1, DO2, DO3, DO4							
		-3.08610129E-12	3.32051378E+00	-7.84879380E-37	1.84183366E-24	-1.50735718E-12	E+00
		-4.51002353E-12	3.34310419E+00	-7.52486425E-37	1.71216357E-24	-1.37756702E-12	E+00
	[pe						
	[re	-5.80282772E-12	3.29575144E+00	-6.62785123E-37	1.44393520E-24	-1.12899918E-12	E+00

Example shown if for T1100 probes and 172-885 iss

- $(\Gamma_{L1}, \Gamma_{L2}, \Gamma_{L3}, ..., \Gamma_{Ln})$: one-port electrical behavior definition of n standards.
- $(\Gamma_{m1}, \Gamma_{L2}, \Gamma_{m3}, ..., \Gamma_{mn})$: the corresponding one-port measurements of n standards.

$$\begin{bmatrix} 1 & \Gamma_{m1} \Gamma_{L1} & -\Gamma_{L1} \\ 1 & \Gamma_{m2} \Gamma_{L2} & -\Gamma_{L2} \\ 1 & \Gamma_{m3} \Gamma_{L3} & -\Gamma_{L3} \\ \vdots & \vdots & \vdots \\ 1 & \Gamma_{mn} \Gamma_{Ln} & -\Gamma_{Ln} \end{bmatrix} \begin{bmatrix} e_d \\ e_s \\ \Delta S \end{bmatrix} = \begin{bmatrix} \Gamma_{m1} \\ \Gamma_{m2} \\ \Gamma_{m3} \\ \vdots \\ \Gamma_{m4} \end{bmatrix}$$
(1)
Where $\Delta S = (e_d)(e_s) - (e_r) = S_{11} S_{22} - S_{12} S_{21}$
 $e_r = S_{11} S_{22} - \Delta S$
(2)

Equation (1) can be rewritten as:

$$A \cdot x = b \tag{3}$$

An optional solution is given as:

$$x = [A^H \cdot A]^{-1} \cdot A^H \cdot b \tag{4}$$

Where A^{H} is Hermitian Matrix of A, of which every entry is the conjugate of the corresponding entry of A.

2 Tier Calibrations

- Two Tier Calibration of a Vector Network Analyzer is a technique that allows two calibration error sets to be combined into one resulting error set for the VNA error correction.
- This technique solves VNA calibration problems that are not easily solved by one calibration error set alone.
- Examples:
 - Mixed port connections (probe + coax)
 - Probes with different pitches
 - Non-matching tip configurations (GSSG + GSG)

Case Study: Differential Amplifier

• No possible Thru, so how do we calibrate to the probe tips?

Answer:

- Ist tier 2-port coaxial calibration
- Ind tier differential probe-tip 1-port cal (port 1)
- 2nd tier single-ended 1-port cal (port 2)

Summary

- On wafer calibrations have several challanges
- Advanced algorythms optimized for on-wafer situations
- Lines are always involved, accurate positioning required
- Additional software often required for specialized cases:
 - Least square calibration (1-port THz)
 - Second Tier (missing/impossible Thru connections)

