TRENDS IN LEVENSDUURTESTEN VOOR MICRO-ELEKTRONICA

PLOT CONFERENTIE

JEROEN JALINK

8 JUNI 2016

MICROELECTRONICS RELIABILITY 54 (2014) 1988–1994

Contents

- Introduction NXP
- Package form factor
- Failure mechanism driven qualification
- Case study
 - -TC fails in WLCSP product
 - Solder Joint Electromigration
- Conclusions

Introduction NXP

Introduction NXP

Package Form Factor

WLCSP bump construction

Predominant types of WLCSP bump constructions

- (A) Direct bumping
 - Under bump metallization (UBM) is directly on the chip's bond pad
- (B) Repassivation
 - A repassivation layer is applied before UBM and bump
 - Decoupling of chip and package
- (C) Redistribution
 - Allows for rerouting of electrical contact.
 - Allows to bump chips used in wire bond packages
 - Fan-in and Fan-out constructions

Failure mechanism driven qualification

- Technologies for semiconductor components are evolving rapidly:
 - Reduced dimensions (e.g., 22 nm wafer fab technology, CSP assembly)
 - More complex (e.g., 3D packages, Package on Package)
 - New devices (e.g., MEMS, CMOS sensors)
- Qualifying products by fulfilling a standard list of tests with prescribed conditions, duration and sample sizes without fails will not be appropriate anymore.
- A risk assessment on relevant failure modes (FMEA) is needed to construct a reliability risk mitigation plan.

Failure mechanism driven qualification

- The use conditions of a device in an application are typically characterized by a Mission Profile (MP)
- Typical elements in a mission profile are for example (but not limited to):
 - Expected field lifetime
 - Temperatures and duration typical for operating the device in the application
 - Environmental stress (thermo-mechanical loading, humidity)

Example of the Mission Profile (MP) for a tablet/smart phone.

Field life time: 5 years		
Operation mode	H/day	T _{device} (°C)
Power	8	85
Sleep	8	25
Idle	8	60
Cycle mode	Cls/day	ΔT (°C)
Power off ↔ on	1	75
Sleep ↔ idle	10	35
Idle \leftrightarrow power	3	25

(Thermo) Mechanical Failure Modes

Four modes: symptom and occurrence

- a) Fatigue crack, through the solder bump at the die/silicon side, observed after temperature cycling
- b) Brittle fracture, through the solder bump at the die/silicon side, observed after (cyclic) drop or vibration events
- c) Chip out, observed directly, after manufacturing or as early field life fail
- d) Brittle fracture in the passivation (top) layer, even extending into the BEoL, after temperature cycling

Current Driven Failure Modes

- Electromigration, in case a high current is running through the bump
- Void growing upstream the e-wind, as a result of extensive exposure to high temperature and current

First and second level reliability

- First level reliability test are performed to cover failures mechanisms in the component itself (die, package or die-package interface), executed on the stand alone component
- Second level reliability focuses on the solder joint reliability, also known as board level reliability, executed on dedicated daisy chains mounted to PCBs

Case study: TC fails in WLCSP product

After 1st level TC on part of a wafer, Component Level (CL-TC): No electrical failure and also no physical damage are observed

Visual inspection after bump removal:

After 2nd level TC on daisy chains, Board Level (BL-TC): No electrical failure but <u>physical damage</u> are observed

Case study: TC fails in WLCSP product

2nd level TC on actual devices, Application Level (AL-TC):

Electrical rejects because of physical damage are observed

Typical fail locations (confirmed by FEM):

Test to fail and life time prediction

Model: modified Coffin Manson

- N_f: number of cycles to failure

C₀: material dependant constant

ΔT: entire cycle range

 ΔT_0 : portion of the temperature range in the elastic region

q: Coffin Manson exponent (failure mode dependent)

- $N_{f,stress}$: number of cycles to failure under stress conditions $N_{f,use}$: number of cycles to failure under use conditions (taken from Mission Profile)

$$N_{\rm f} = C_0 \times (\Delta T - \Delta T_0)^{-q}$$

$$AF = \frac{N_{f,stress}}{N_{f,use}}$$

- q = 6 (worst case value for a brittle fracture) ΔT - ΔT_0 = 185 (-40 to 125 °C) $N_{f.stress}$ = 100 cls (experimental result)

Life time
$$= 28 \text{ yrs}$$

Case study: Solder Joint Electromigration

WLCSP test-structure

$$TTF = J^{-n} \times exp^{\left(\frac{E_a}{k} \cdot \frac{1}{T}\right)}$$

TTF: Time To Failure

J: current density

k: Boltzmann Constant

T: temperature

"n" and "E_a": power exponent and activation energy (material specific)

Life time prediction

Acceleration Factor (AF)

t_{50,stress}: time 50 % of the population fails under stress conditions
 t_{50,use}: time 50 % of the population fails under use conditions (taken from Mission Profile)

$$AF = \frac{t_{50,\text{stress}}}{t_{50,\text{use}}}$$

Life time for a tablet or smart phone

E_a = 0.95 eV (from results on previous slide)
 Temperature under stress condition: 165 °C
 Temperature under use condition: 85 °C

$$AF = 290$$

The expected lifetime for the application is **35 times** covered!

Understanding Preferred Failure Locations

- Weakest spots from
 - a) X-section after EM test

b) FEM Mass flux distribution in the copper shell around the polymer core

c) FEM Mass flux distribution in the SnAg solder material

Conclusions

- For WL-CSPs, direct interaction between the PCB and the silicon/die via the solder joint is much larger than for products in conventional lead frame or substrate based technologies
- New test methods, like AL-TC, and detailed assessment of failure modes and mechanisms via FEM, both help to understand the impact of stress/loading in applications
- Life time under application conditions can be predicted when acceleration models are determined together with the acceleration parameters

Acknowledgment

- Co-authors: Rene Rongen, Romuald Roucou, Paul vd Wel, Frans Voogt, Frank Swartjes, Kirsten Weide-Zaage
- Other contributors: Jeroen Zaal for the modeling work, NXP Failure Analysis teams for the many X-sections and other sample preparations

SECURE CONNECTIONS FOR A SMARTER WORLD