

PLOT 20 Year System Reliability Test, HALT & HASS

Simon Bakker

Senior Reliability Test Engineer

Outline

- MASER Engineering
- Introduction
- HALT
- HASS
- HALT & HASS
- Q&A

Introduction: MASER Engineering

- MASER Engineering is a Dutch based Independent Service Provider
- Advanced Failure Analysis capabilities
- Full Reliability Testing including all climatic, structural and ESD testing
- 42 well trained and experienced employees for Test and Diagnostics services
- ISO 17025 accredited and ISO 9001 certified Lab
- Representatives covering the EMEA area
- 23 years active since 1993
- 1950 m² office and EPA test & analysis laboratories in Enschede, NL

Product scope: Physical Analysis

- Non Destructive Analysis: E-test | 2D-XRAY | 3D-XRAY | SAM | LIT | EOTPR
- Sample Preparation: mechanical cross-sectioning | plasma | FIB
- Fault Localization: LIT | EMMI | OBIRCH | LVx | C-AFM
- Imaging & Material Analysis: Optical | SEM | TEM | FIB | AFM | SIMS | Auger
- First Silicon Circuit Edit service > 28nm, Front and Backside, CAD driven

Product scope: Reliability Test

- Design and Manufacturing of R/T boards and mechanical test fixtures
- Electrical & Special Test: DC + optical parametric | Structural | ATE | LEDs
- ESD & Latch-Up test: HBM | MM | CDM | TLP | System test
- Environmental test: HTOL | THB | HAST | TCY | MSL | PTC | more
- Mechanical test: Vibration | Shock | Centrifuge | Bending | Pull/Shear | more

Introduction: Reliability

Reliability definition

"The probability that an item can perform its intended function for a specified interval under state conditions." [MIL-STD-721C, 1981]

Application	Operating T [°C]	Lifetime [years]
Consumer	0 to 70	3-5
Industrial	-40 to +85	7-10
Automotive	-40 to +125	15-20
MIL / Space	-55 to +125	20-30
Medical	0 to 70	20-30

Trends that have an impact on Reliability

- Lifetime expectations are changing
- Interconnect complexity and density
- Miniaturization and integration require more thermal management
- Need for "alternative" materials (e.g. green, flexible, 3D printed)
- Faster pace of introduction of new materials and technologies
- Constant pressure to reduce Time-to-Market, Time-to-Volume and costs
- Less available time to test and to build confidence in new materials and techniques

Introduction: Product Life Cycle

- Traditional Product Life Cycle
 - Based on Design → Build → Test → Fix and Test

- More advanced approach to Reliability Engineering
 - Includes important Reliability Engineering concepts

PoF= Physics of Failure

HALT= High Accelerated Lifetime Testing

DfR = Design for Reliability

SPC = Statistical Process Control

P&HM = Prognostics & Health Management

RUL = Remaining Useful Lifetime

HALT: Design validation

Highly Accelerated Life Testing

- Method developed in mid 70's in order to shorten DVT iterations
- Addressing interconnects intermittent defects with OVS design
- Faster feedback from material weaknesses to the design and manufacturing process
- Process drifts should become more and better visible
- Better correlation with field returns

Where does HALT fit in the design process?

- There has to be a functional and stable prototype
- Preferable manufactured on the final assembly line with final materials
- Functional and Parametric monitoring to be implemented in the design

What does HALT do and what not?

- It is not a PASS/FAIL test
- It will not generate a MTBF figure
- It allows you to make your product more robust, with faster qualification cycles

HALT: What is it

- Design tool
- Discovery process
- Step stress approach
 - Incremental, controlled, documented
- Multi stress test
 - External: temperature, temperature change, vibration
 - Product specific: power, current, load, frequency, pressure, force, etc.
- Stress product outside specifications

HALT: Process

Process flow

- Each stress type is applied individual and combined.
- Stress levels are stepwise increased.
- Start with the least fatal stress type.
- At each stress level a functional test is performed.
- If failure or issue is found, determine the cause and fix it 'on the fly'.
- Increase stress level, perform functional test, fix, continue.

HALT: Product Margins

Stress

HALT: Product Margin Aging

Stress

HALT: Process over view

HALT: Preparations

- HALT can only be successful after proper preparation
- At what stage of design process HALT to be performed
- Preparation meeting with Design, Test and HALT engineer
 - System description
 - Sample size definition, based on cost and availability
 - Functional and Parametric E-test definition
 - Mechanical / Thermal construction assessment
 - Mechanical fixture design directive
 - Parts list scan for destruct limits
 - Initial HALT limits estimation
 - Spare parts and repair guideline
 - Onsite and Standby crew definition during HALT sequence testing
 - HALT planning and quotation

HALT: Examples of systems

- Multiple small units for redundant behavior study
- Larger systems in partly open position

HALT: Failures and issues

- Electrical detectable
- Visual detectable
- Hardware and software

HASS: Production validation

Highly Accelerated Stress Screening

- This is a test with PASS/FAIL result
- Screening of manufacturing process and products
- Stress parameter settings based on HALT results with safe margin
- Stress parameters still outside the product specification
- Use same OVS system as HALT

Goal of HASS

- Find any deviation in the produced unit quality due to change of assembly process, component quality or material
- Either sampling or 100%, depending on application and lot sizes

Implementation of HASS

- Screening and Sampling plan
- HASS validation by 5x test execution without deterioration of the system
- Multiple unit fixture construction with fast access
- Multiple unit driver/monitoring setup
- Larger OVS system

HASS: Implementation

- Final stage of product design
- HALT evaluation results
- Fixture with multiple positions and easy access
- Functional test system, Pass/Fail
- HASS screen evaluation results

HALT & HASS: Users

- Aerospace
 - Cockpit flight information display, Passenger entertainment center, ...
- Automotive
 - Motor management, Sun roof control, LED-tail light, ...
- Domestic appliance
 - Mobile home refrigerator control, Personal care, ...
- Telecommunication
 - DECT and GSM base station, Burglar alarm system, ...
- Lighting
 - LED-light, Beamer light assembly, ...
- Medical
 - O²-sensor, X-ray imaging system, ...
- Industrial
 - Ethernet switch, Compressor management system, Power grit control, ...
- Sensors / actuators
 - Pressure sensor, Mass flow meter, Valve actuator, ...

HALT & HASS: Past to future

1999

- HALT system purchased at MASER
- Introduction and development of HALT test for customers
- Main failures / issues: Mechanical failing leads and solder joints

1999 – 2016

- Reduction in number of mechanical failing leads and solder interconnects
- Reduction in number of mechanical failing solder joints (mature lead free process)
- Slight increase of 'real' design related issues

2016 - ...

- Increase of HALT adoption for in depth design checks by designers
- Increase in number of designs where HALT is integrated in the design process
- HALT not being "a must" but changed to "a want to" test to improve design concepts in an early phase to minimize reliability issues and field returns

HALT workshop offer

HALT workshop

- HALT introduction and place in the system design & manufacturing flow
- Live setup and preparation at QualMark OVS 1.5 system
- All HALT functions will be demonstrated
- Dewetron BeNeLux is partner for the data acquisition hardware and test object

Workshop location and information

- MASER Engineering, Capitool 56, 7521 PL Enschede
- More information at Simon Bakker or Mark Gortemaker, T +31534802680
- E-mail: simon.bakker@maser.nl or mark.gortemaker@maser.nl
- Registration per e-mail at sales@maser.nl or at our booth during this conference

???? Questions & Answers !!!!

Thank you for your attention!