

Beyond the Standards: Testing for Reliability in Photovoltaics

Anna J. Carr

PLOT Conferentie
Corpus Congress Centre, Oegstgeest
8 Juni 2016

Outline

- Introduction to ECN and ECN Solar
- Photovoltaic Modules
 - Standard Rating
 - Components
 - Reliability and Failure
 - Standard Certifications tests
- Testing beyond the standards @ ECN
 - PID Potential Induced Degradation
 - Fretting Corrosion of electrical contacts
 - Anti-Soiling coatings Desert Applications
- Conclusion

Position

R&D fields

Process & Energy Industry

ECN Solar Energy

- » Lower cost
- » Higher energy yield
- » Better sustainability
- » ECN Strength: Bringing Laboratory Technology to industrial Partners
 - » Failure mode analysis & bankability (durability) demonstration

ECN Module Technologies

ECN Bifacial Glass – EVA – Glass

ECN Black Beauty

Glass – EVA –

Conductive Back Sheet

PV Modules

Standard Module Rating

- PV modules and systems sold by Watt peak (Wp)
- Wp is a standard accepted measure
 - The maximum power produced by a module at standard test conditions (STC)
- STC
 - Illumination (irradiance) = 1000W/m²
 - Temperature = 25°C
 - Spectrum = Air Mass 1.5 (AM1.5)
- Key parameters
 - Maximum Power (Pmax)
 - Open circuit Voltage (Voc) & Maximum Power Voltage (Vmp)
 - Short circuit Current (Isc) & Maximum Power Current (Imp)
 - Efficiency (η)

Standard Module Rating

Module Components

Module Components

Requirements

- Protection for fragile and moisture sensitive solar cells
- Good optical coupling on front side of cells both sides for bifacial
- Safe (electrically, low flammability, no falling shards)
- Durable (temperature, moisture, UV)
- Robust (handling, transport, snow loading)
- Mountable

Warranties are typically 25 – 30 years

Example:

Power > 80% after 25 years

Materials and workmanship – 10 years

Failure Examples

Failed Solder Bond

Source: NREL – Atlas NIST workshop – 2013

http://www.slideshare.net/m4rcel02005/determining-the-acceleration-rates-for-pv-module-stress-tests

Module Reliability

Fig. 3.1: Three typical failure scenarios for wafer-based crystalline photovoltaic modules are shown. Definition of the used abbreviations: LID – light-induced degradation, PID – potential induced degradation, EVA – ethylene vinyl acetate, j-box – junction box.

Source: IEA-PVPS 2014

Standard Certification Tests

- IEC 61215 /61646 Performance standard
 - Diagnostic visual inspection, hot spot
 - Electrical insulation resistance, wet leakage
 - Performance Pmax @ STC etc.
 - Accelerated aging Damp Heat, Thermal Cycling,
 Humidity Freeze, UV exposure
 - Mechanical Hail impact, mechanical load...

- IEC 61730 safety standard various hazards
 - Electrical, Thermal, Mechanical & Fire

Diagnostic Electrical Performance Parameters Thermal Irradiance **Environmental** Mechanical Light Soaking (thin-film)

Safety (electrical, thermal, mechanical, fire)

Source: TÜV America

Beyond the Standards

Potential Induced Degradation

What is PID?

- Potential Induced Degradation (due to elevated system voltage 600 1000V)— responsible for rapid and severe degradation of power output of some modules.
- Ionic transport occurs through the glass and encapsulant, and those ions are involved in the degradation.
- Driving forces:
 - Potential difference between frame and cell
 - High Humidity
 - Elevated temperature

What is PID?

Figure 1: Build-up of electrical charges due to a leakage current between the PV cell and module frame

PID Test and set up

- No test for PID in IEC 61215
- Proposed standard IEC 62804 is being developed
 - 96 hours @ 85% RH, 60°C, Cells at system voltage relative to frame
 - Pass / fail limit 5% relative power degradation @STC

PID Tests at ECN

ECN PID tests with different encapsulants and susceptible cells / modules

- Solution can be to use more insulating encapsulant expensive
- This is not a sufficient solution for all types of cells and modules

ECN PID free modules

- ECN have developed cells and modules that are intrinsically PID free
- Engineered PID sensitive modules to fully understand the PID process
- Result: A full understanding of the PID process in these cells and modules
- Industrial low cost method to produce PID free cells and modules
 available to industry

Reference: Stodolny et al, *PID-and UVID-free n-type solar cells and modules*, SiliconPV Conference 2016

Fretting Corrosion

Fretting Corrosion of Electrical Contacts

- Fretting Corrosion
 - Fretting corrosion causes failures at contact points Safety issue
 - Defined as:
 - "Fretting is a special wear process that occurs at the contact area between two materials under load and subject to minute relative motion be vibration or some other force."
 - If movement is less than 80μm when wear occurs this is termed "fretting"
- Current IEC tests do not test for fretting corrosion in junction boxes
 - Being discussed in standards circles

Fretting Corrosion – what is it?

Image Source: PV magazine – S. Ali Oettinger, 11/2003 www.pv-magazine.com

Different Thermal expansion coefficients of contacts

Friction at contact surfaces (small movement)

Higher contact resistance

Local heating and melting / failure of J-box

Fretting corrosion test approach

- ECN and Solned designed a test regime
- Tests were carried out at ECN
- Approach: Simulate conditions for fretting corrosion
- Junction boxes subjected to thermal shock
 - -40 °C + 85 °C
 - Different thermal expansion coefficients cause displacements
 - More severe than thermal cycle
- Junction boxes under load during test
- Contact resistance measured on line during test – sample frequency 5sec -
- Length of test 7 days / 144 cycles.

Solned Junction Box

Fretting corrosion test set-up

Data cables & Power Supplies

Wired up samples

Thermal Shock Chambers

Results – Stable contact resistance

Results – Contact showing escalating resistance

ECN

Conclusions of fretting corrosion tests

- Fretting corrosion test successful sufficiently stresses susceptible j-box contacts to induce escalating contact resistance over time – start of fretting corrosion
- First run of tests some instability observed in some contacts
- Based on results contact design changed by Solned
- Follow up tests on new contact design showed that it was stable
- Fretting corrosion test provides a simple and effective way to test electrical contact designs for safety

Anti Soiling Coatings

Challenges for PV in desert regions

Challenges for PV in desert regions

Assessment of anti-soiling coatings

- Developed a fast and conclusive method for artificial (accelerated) soiling/cementation and testing of anti-soiling coatings
- Tested the performance of anti-soiling coatings from several suppliers
- Durability tested: abrasion resistance test following standard (EN 1096-2)
- Assessment techniques not restricted to PV applications applicable to any coating

References

Travis Sarver, Ali Al-Qaraghuli, Lawrence L. Kazmerski, Renewable and Sustainable Energy Reviews Volume 22, June 2013, Pages 698–733

Approach

- Local abrasion of glass sample with anti-soiling coating
- Artificial soiling (white) within and outside the abrasion zone
- Removal of soiling by pulling off using adhesive tape (black square, very good performing AS coating in this case)
- Visual inspection: between red lines AS coating still OK after abrasion > 10000 strokes (Very good abrasion resistance for this sample)

Results for a representative coating

- All white parts: soiled area
- Red marked area: surface subjected to abrasion test (prior to soiling), soiling strongly adheres
- Green: surface not subjected to abrasion test, low adhesion of soiling
- Black: all loosely adhered soiling pulled off
- Anti-soiling effect largely annihilated after abrasion test for this sample

Relative performance of anti-soiling coatings

- Ranking of 3 different anti-soiling coatings with respect to effectiveness and abrasion resistance.
- Pass criteria 500 strokes (EN 1096-2 standard)
- Abrasion resistance of coatings can vary substantially (by factor >20)

sample	A	AS activity	
	initial	after abrasion (no. of strokes)	
Ref glass		No test	
1	++	- (500-1000)	
2		No test	
3	++	++ (>10000)	

Legend AS activity ranking	
	non visible
-	low
+	good
++	excellent

Conclusions

Conclusion

- ECN Solar are active in the bulk of the photovoltaics value chain
- PV Module developments require testing both at IEC standards and outside the standards
- PID testing at ECN enabled a full understanding of the PID mechanism in our high efficiency cells and modules – resulting in a lower cost industrial process for PID free cells and modules
- Fretting corrosion test method for junction box contacts is developed can be applied to any electrical contacts
- Fast assessment of anti-soiling coating developed, and coatings tested for durability following abrasion standard — not restricted to PV applications

