Predicted Reliability

Voorspelde betrouwbaarheid

Jan Betten Head Product Development & Test Engineering

Veendam

Electronic Manufacturing Services (EMS)

Design Support & Engineering Innovation

High Tech System Supplier

High Tech System Supplier and EMS specialist

- ✓ Industry
- ✓ Medical & Diagnose
- ✓ Defense & Security
- ✓ High quality standards:
 - ✓ ISO 9001
 - ✓ ISO 13485
 - ✓ AQAP 2110
 - ✓ IPC-A-610 / 620 / 630
 - ✓ ISO 26000 (MVO) & ISO 14001 (environment)
 - ✓ Work according OHSAS 18001

Competences

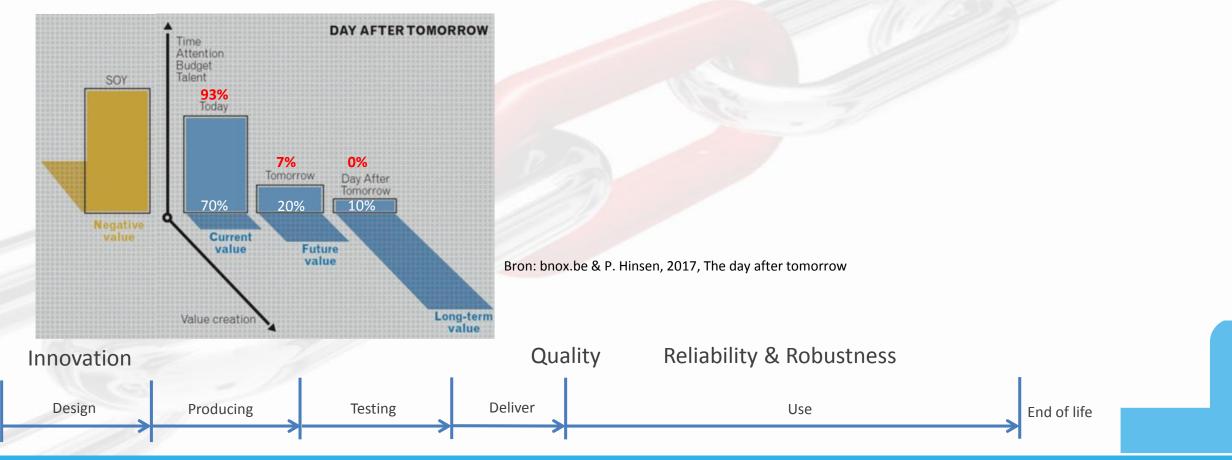
 ✓ System supplier & EMS
✓ Smart Custimization
✓ Product Life Cycle Management (LCM)
✓ Development & Engineering
✓ Early Involvement
✓ Design for eXcellence (DfX) Reliability & Robustness
✓ Technical support of product certification

Contents Predicted Reliability

- ✓ Definitions
- ✓ Why?
- ✓ When?
- ✓ How?
- ✓ Summary

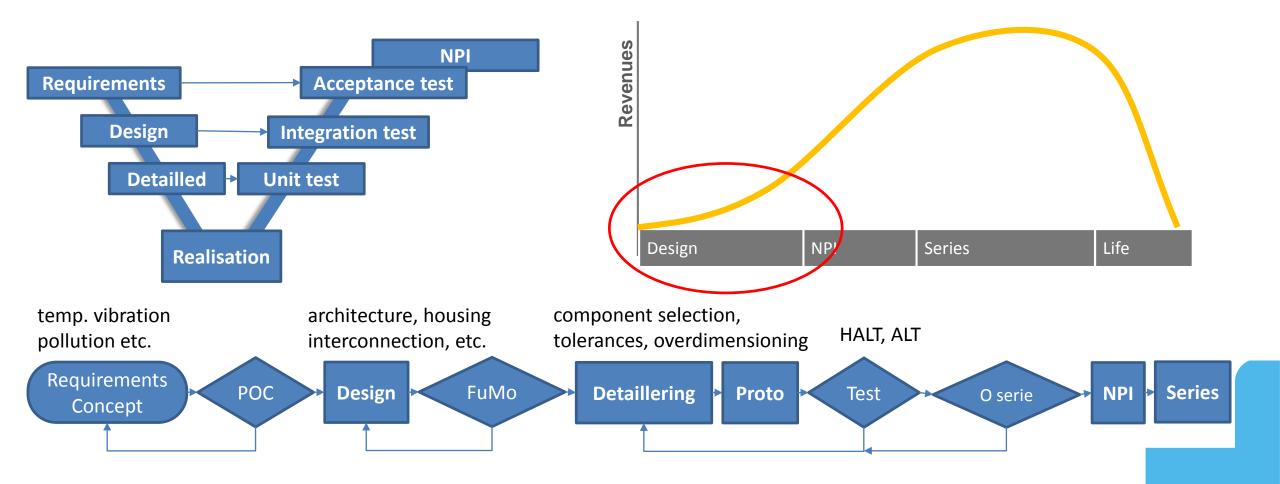
Definitions

- ✓ **Quality** (kwaliteit) = De productprestaties in relatie tot de functionele eisen <u>direct na levering</u>.
- Reliability (betrouwbaarheid) = Het vermogen van een systeem om consequent de bedoelde functie uit te voeren zonder verslechtering of uitval. <u>Kwaliteit na verloop van tijd</u>.
- Robustness (robuustheid) = Het vermogen van een systeem om te <u>blijven functioneren</u> onder de aanwezigheid van ongeldige inputs of stressvolle omgevingscondities.


 Innovation (Innovatie) = De ontwikkeling en succesvolle invoering van nieuwe of verbeterde goederen en diensten.


Definitions

Hoeveel tijd besteedt u aan waardecreatie (innovatie) voor de dag na morgen?



Why reliability?

- ✓ Avoid "Shit of Yesterday"
 - $\checkmark\,$ Failure in the field
 - ✓ Damaged image, claims
 - $\checkmark\,$ High costs for service and repair
 - ✓ The customer will find it!
- ✓ Keep you focussed at innovation
 - ✓ Opportunity for new business models
 - ✓ Service & repair
 - ✓ Product upgrade
 - ✓ Spare parts
 - ✓ Product costs reduction

When?

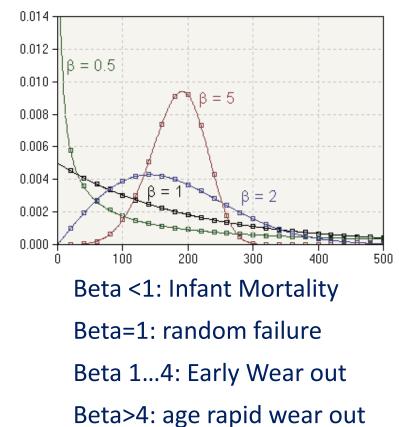
How?

- Predicted Reliability:
- 1. Physics of Failure (PoF, "How stuff fails")
 - Voorgaande producten, QA database, Weibull-verdeling
- 2. Data sheets
 - MTBF, FIT, calculating , simulation and measure
- 3. Reliability Standards (empirical models)
 - IPC-A 6x0, MIL, SR-332
- 4. Testing
 - HALT, ALT, MEOST

How? Physics of Failure

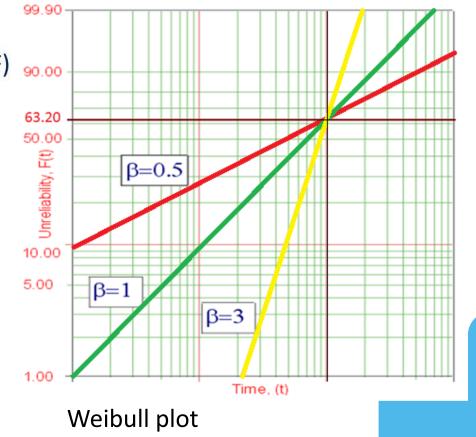
Register failure data

when, show time, interval, serial number, environment, conditions, ...

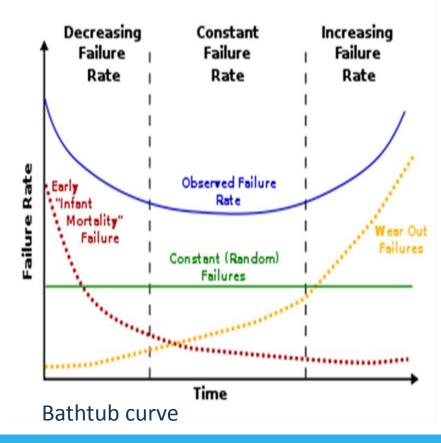

- 1. Effect, Expected function not available No output, No connection, No coffee, ...
- 2. Mode, Type of failure shutting down, degraded functionality, ...
- 3. Mechanism, Physical explanation corrosion, fracture, fatigue, ...
- 4. Initiator, Physical root cause

Temperature, Moisture, Vibration, Voltage, Salt, ..

How? Physics of Failure


✓ Analyze the data; Weibull Distribution

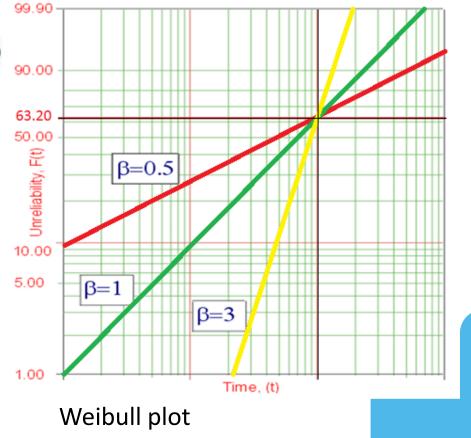
Statistical distribution (CDF) $F(t) = 1 - e^{-[t/\eta]^{\beta}}$

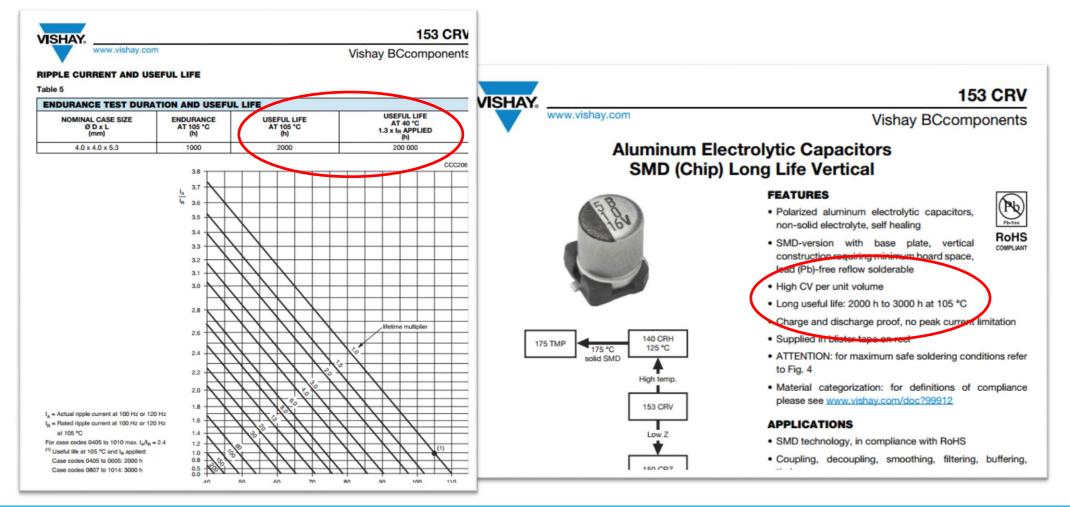

F(t) = Failure Percentage β = Shape Parameter η = Characteristic Live

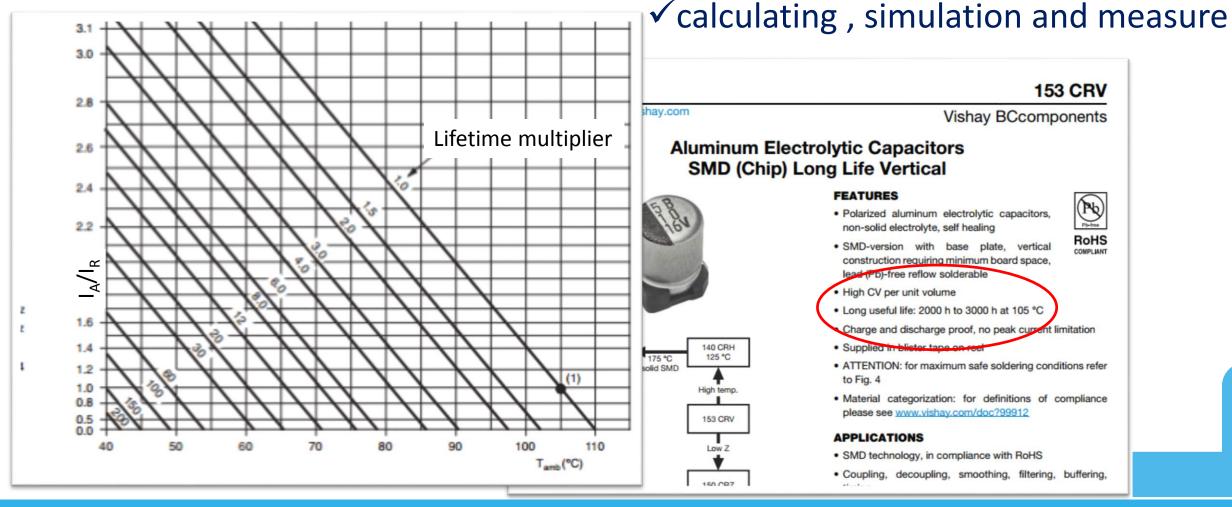
> @ $\beta=1$, $\eta=t$ F = 1 - 0,368 Failure = 63,2% R = 1 - F Reliability = 36,8%

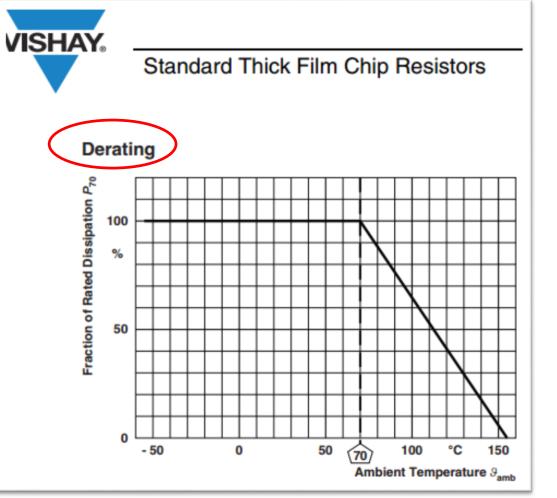
How? Physics of Failure

✓ Analyze the data; Weibull Distribution

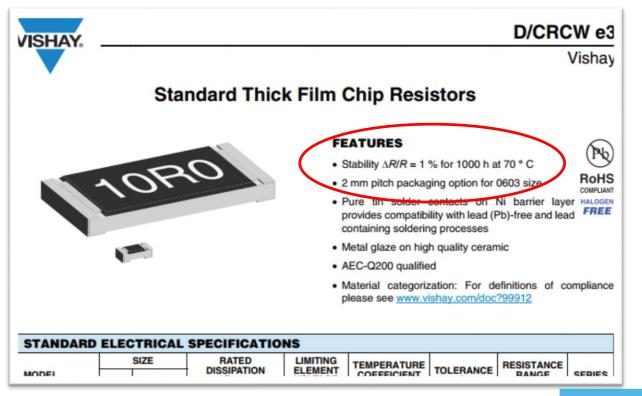



VARIASS


Statistical distribution (CDF) $F(t) = 1 - e^{-[t/\eta]^{\beta}}$


F(t) = Failure Percentage β = Shape Parameter η = Characteristic Live

Beta <1: Infant Mortality Beta=1: random failure Beta 1...4: Early Wear out Beta>4: age rapid wear out

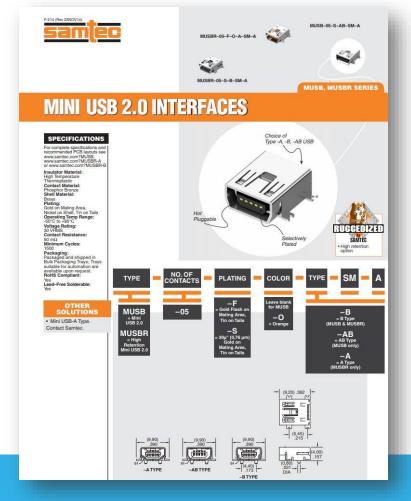


VARIASS

\checkmark calculating , simulation and measure

SPECIFICATIONS

For complete specifications and recommended PCB layouts see www.samtec.com?MUSB, www.samtec.com?MUSBR-A or www.samtec.com?MUSBR-B

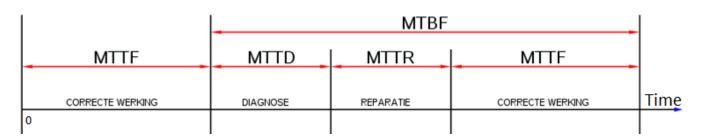

Insulator Material: High Temperature Thermoplastic Contact Material: Phosphor Bronze Shell Material: Brass Plating: Gold on Mating Area, Nickel on Shell, Tin on Tails Operating Temp Range: -50°C to +85°C Voltage Rating: 30 VRMS

Centact Resistance: 50 mΩ Minimum Cycles: 1500 Packaging: Packaging:

Durability = 1500

VARIASS

✓ calculating , simulation and measure



ENVIRONMENTAL SPECIFICATIONS

Specification	Test Conditions / Notes	Min	Nominal	Max	Units					
Operating Temperature Range	No de-rating up to 50°C	-20	°C	COMPACT, EFFICIENT 600 W, AC-DC POWER SUPPLY						
Operating Temperature Range with De-rating	See de-rating curves and conditions in the Output Specifications section	n the 70 °C IT AND MEDICAL RATED DDP600 DS_DDP600 Series_Rev02 Oct								
Storage Temperature		-40	-	85	°C					
lumidity	RH, Non-condensing Operating. Non-operating	-	-	90 95	%					
Operating Altitude	MoPP (100 – 250 V _{AC} , 50/60 Hz) MoPP (100 – 277 V _{AC} , 50/60 Hz) MoOP, ITE grade Power de-rating above 1800 m			4000 3000 5000	m	edical grade AC-DC power ctor and high efficiency that the of regulated DC power through the 14.2 X 7.0 X 1.6" form factor. The				
hock	EN 60068-2-27 Operating: Half sine, 30 g, 18 ms, 3 axes, 6 Non-Operating: Half sine, 50 g, 11 ms, 3 axes, 6		sis or enclosed with a built-in front ration. efficiency, the DDP600 generates management in space constrained							
/ibration	EN 60068-2-64 Operating: Sine,10 - 500 Hz, 1 g, 3 axes, 1 Random, 5 - 500 Hz, 0.02 g ² /H Non-Operating: 5 - 500 Hz, 2.46 g _{RMS} (0.0122 g	z, 1 g _{RMS} , 3 axe	es, 30 min.			eliability. ndard output voltages and offers outputs. Available control signals te On / Off (PS_Inhibit).				
MTBF	Full Load, 40 °C ambient 80% Duty cycle, Telcordia SR-332 Issue 2	300000	-	-	Hours	Pensuit for parallel operation power. To optional OR-ing w N+1 rejundant operation.				
Jseful Life	Worst nominal V _{IN} , 80% load, 40 °C ambient.	-	4	-	Years	put power from -20 to 60 °C. The				
				rating. When na	tural convection co	when providing it with a 500 LFM p to 70 °C with output power de- port A huilt-in fan sneed control circuit				

MTBF = 300.000h -> 34 Years ?

How? MTBF

MTBF (mean operating time between failures)

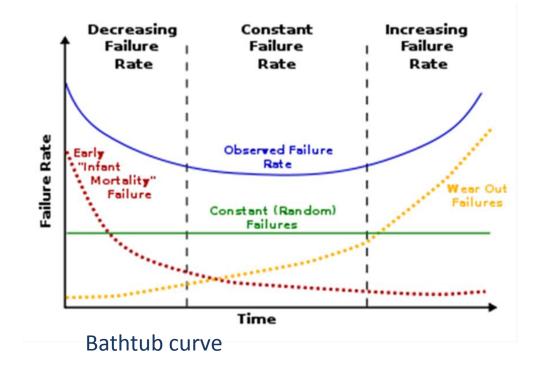
 $R(t) = e^{-\lambda t} = e^{\overline{MTBF}}$ @ t = MTBF -> Reliability R(t) = 36,8%

Power Unit: R(t) = 36.8% @ 300.000h (34 Years)

R(t) @ 3 Years: R(t) = 92%

Calculation of spare parts

Q = N * (T / MTBF)


- Q = # of spare units
- N = # of operating units
- T = expected live time

T = 3 Year, N = 100 units

Q = 100 * (26.280 / 300.000) = 9 units

VARIASS

10 degrees decrease in temperature makes the lifetime double

How? Reliability Standards

	MIL-HDBK-217	FIDES	SR-332	
Origin	US Army	European tech industry	US telecom indu	stry
Publisher	DoD, model is not supported anymore	Fides group (Thales, Eurocopter, Airbus, others)	Telcordia (subsid of Ericsson)	liary
Modelling	Components only	Components and process	Components o	
Required input	Relatively much	Relatively much	Relatively fev	0.8
Supported components	Many components, some are obsolete	Relatively few components	Many compone	0.6 0.4 Q
Quality assessment	Very complex	Complex	Easy	0.2 A

Reliability software:

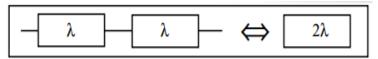
-ReliaSoft

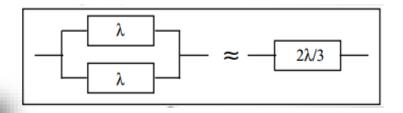
-RAMS (Reliability, Availability, Maintainability and Safety)

VARIASS

Derating diagram

40

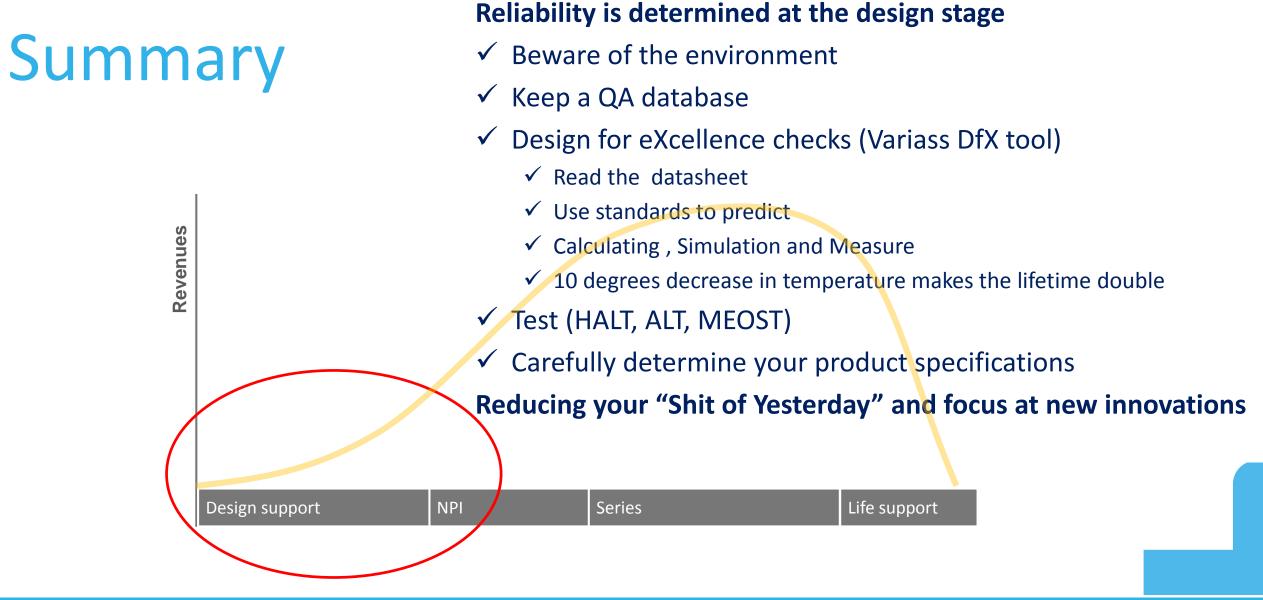

80


120

How? Reliability Standards

Component name	Descriptio	'n	Number of components at stress fact				Failure rate at stress fact			N*La		
			20%	50%	80%	209	%	50%	80%	0,000	0000001	1
Resistors												
	Metal low p	oow.	0	19	0	1,5	5	2	3	38		
	Metal high	pow		0		8		10	13	0		
Fixed Wire	Precision		0	2		3,5	5	5	8	10		
	Power		1	0		8		15	30	8		
Variable Wire	Precision			0		320	0	400	440	0		
	Power		0	0		170	0	210	275	0		
Trim	Cermet			0		5		6	7	0		
Capacitors												
Elco	Solid			0		45		75	175	0		
	Wet Mini			0		25		55	135	0		
	Wet Small	Opto		_	LED	1			20	35	80	20
	Wet Large				Opto-cou	inler 1			20	35	80	20
X - Y		7.1.16			0010 000				20			
Film		Total fa	allure r	rate								1027,69
Ceramic												
Samiconductore		Factor for ambient temperature						r for envir				
			0,8 for	15	Kt= 1		K3=	1 for	gnd benign	K3= 3		
		1	1 for	30				3 for	gnd fixed			
		1	1,2 for	45				9 for	gnd mobile			
		1	1,5 for	55								
		1	2 for	70			N*L*K	t*K3=	3083,07			

Failure Rate $\lambda = 1 / MTBF$ FIT , Failures In Time (10⁹h) FIT = 10⁹ / MTBF



M.T.B.F 324352,0257

How? Test

- ✓ HALT (Highly Accelerated Life Testing)
 - ✓ "smoking out failures"
 - \checkmark Testing for Failure and Robustness
 - \checkmark Define weak components for improvements
- ✓ ALT (Accelerated Life Testing)
 - \checkmark Testing for live
 - ✓ Reliability
 - ✓ Predict lifetime
- ✓ MEOST (Multiple Environmental Over Stress Testing)
 - \checkmark Determine or Demonstrate field failures
 - \checkmark Combined more stresses
 - \checkmark No Standards

follow our lead

Learn how we can help you to avoid Shit of Yesterday

We enable your success!