The value of material characterization in product development

Paul Deeben Philips Innovation labs

29 NOVEMBER 2018 TECHNIEKHUYS VELDHOVEN PLOT CONFERENTIE TOMORROW'S RELIABILITY

Local partner, global reach

>200 companies served yearly

PHILIPS

Innovation

labs

High Tech Campus The Netherlands

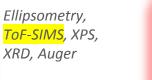
- Reliability testing
- 35 analytical techniques
- Experts in material science & testing
- Consultancy
- Allways there to help you

For general questions related to Philips Innovation labs call Ben Broers

Phone: +31 6 55874122 b.m.f.broers@signify.com

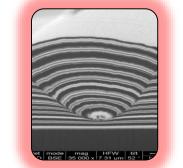
Agenda

- Material characterization tools
- Examples material characterization in product development


SEM-EDX, GC-MS, TOF-SIMS, FT-IR, µXRF

Strenght of combining reliability testing & material characterization

Overview material characterization tools



Surface and thin-film

Compositional analysis

Advanced imaging

SEM, TEM, FIB, XRT, AFM, profilometry, thermography

Particle size, BET, thermal analysis, rheology, mechanical testing

Physical characterization

Hot / Cold Storage, Damp Heat, Temperature Shock, Slow / Fast Cycling, Vacuum, UV Simulation

Environmental testing

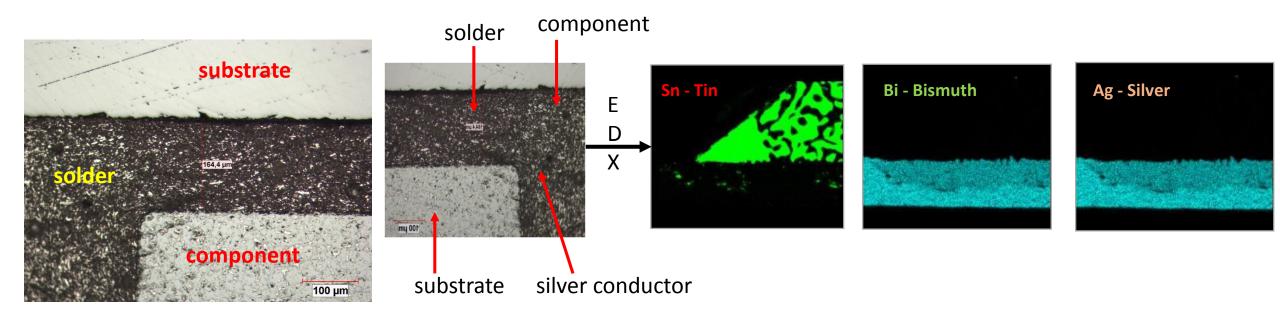
Insitu Testing

Lifetime setup, Monitor (I/V/R vs time), Automated Power Supplies, Event Detection, PTC

HALT, MEOST

Reliability

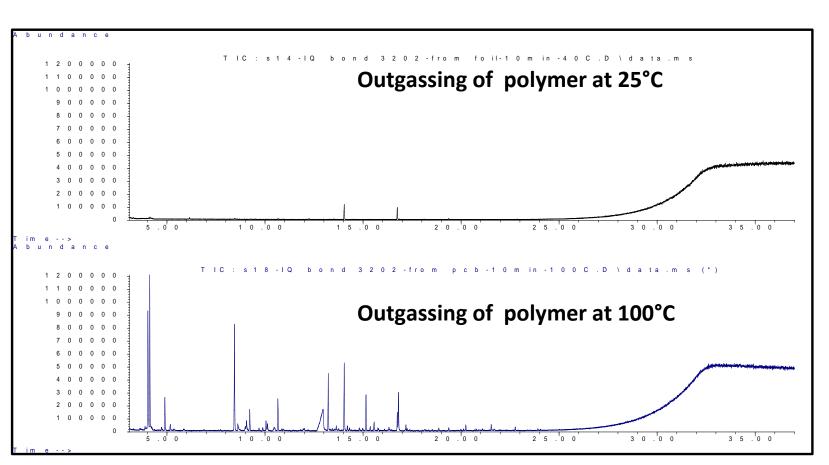
Some examples of material characterization in product development


Interconnect thickness and composition control – electrical resistance increase

SEM-EDX (Scanning Electron Microscope)

- Compositional info (identification of elements & atomic %)
- Geometrical info (dimensions,..)
- Visual info (crack, voids, ...)
- Magnification >100.000x

Backscattered electrons produce images with contrast that carries information on the differences in atomic mass **Secondary electrons** give topographic information


X-rays are a "fingerprint" of each element; used to identify the elements that exist in a sample



Polymer outgassing – unwanted deposition inside product GC-MS

Gas Chromatography - Mass Spectrometry can separate, identify and quantify complex mixtures of chemicals

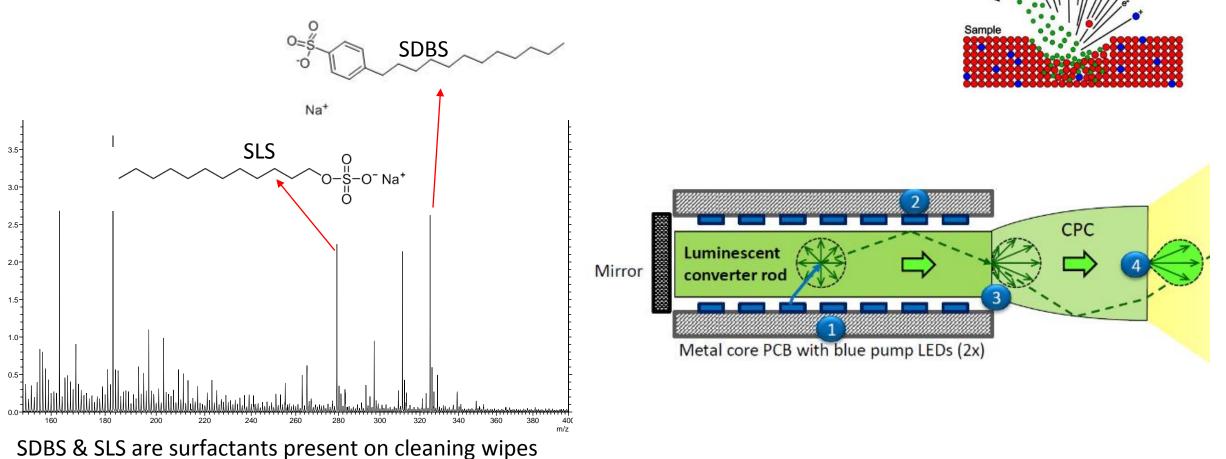
Degassed components during glue curing or product life can be measured

PLM

CONFERENTIE

29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

Very low outgassing glue at 25°C, only traces of silicon containing compounds (siloxanes) were detected.


The outgassing of the glue at 100°C:

- solvents (e.g. 2-(2ethoxyethoxy)ethanol)
- triethylphosphate (a flame retardant)

Surface contamination – adhesion problem even after cleaning TOF-SIMS

TOF-SIMS provides molecular information from surfaces of solid materials

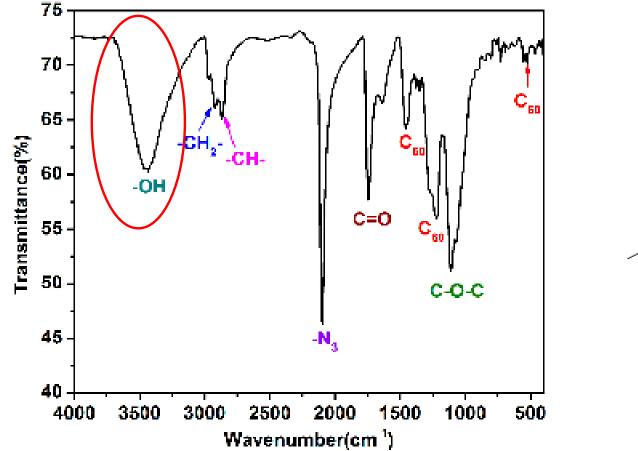
- Most sensitive surface analysis technique (ppm/ppb)
- Organic & inorganic contamination

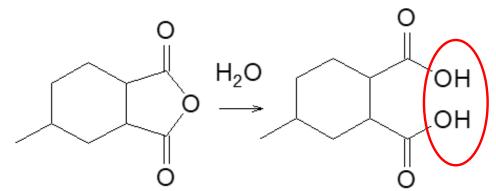
PLOT

Primary Ion Beam IBER 2018

TECHNIEKHUYS VELDHOVEN

Secondary ions.


mary ions


electrons, leutrals, nolecules and

FTIR Fourier Transformed Infra Red spectroscopy

IR spectroscopy is the spectroscopic technique which uses the Infrared light and studies its interaction with the molecules. The spectra generated can give a lot of information about the molecule, especially about the functional groups associated.

Epoxy degradation reaction

Black electrical insulator layer – degradation @ high%RH

Functional parameter: Break Down Voltage (kV/mm) **Disadvantage :** BDV test is a destructive test (large nr of samples needed / expensive)

It was discovered that the FTIR peak height at 1500cm-1 correlates to decreasing break down voltage

Sensitivity of %RH investigation with a damp-heat storage test two levels

Test condition A: Storage at 85°C/15%RH

Test condition B: Storage at 85°C/85%RH

A: Storage at 85°C/15%RH B: Storage at 85°C/85%RH FF Ref di electric lave Ref di electric lav 0.15 0.15-0.10 0.10-Ps q Abs 11mm 1A AA 0.05 0h 0.05 0h -0.00 -0.00 0.25 DLM_16_1 dielectric layer 100 hrs DLM 10 1 dielectric laver 192 hrs 0.15 0.20 0.15lå. 0.10 500h 500h 0.10-0.05 0.05 DLM_10_1_di electric layer_1150hrs 0.25 DLM_16_1_di electric layer_1150hrs 0.20 0.10 0.15 2000h 2000h 0.05 0.10-0.05 -0.00 3500 3000 2500 2000 1000 3500 3000 2500 2000 1500 1000 Wavenumbers (cm-1) Wavenumbers (cm-1) 1500cm-1

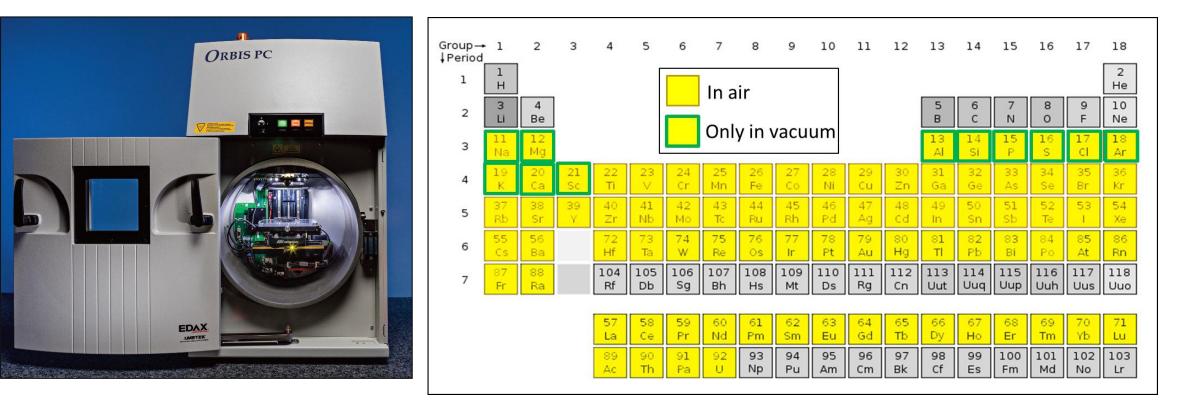
Black electrical insulator layer – degradation @ high %RH FT-IR

Peak height at 1500cm-1 decreases in time (= correlated to decreasing break down voltage)

1500cm-1

Black electrical insulator layer – degradation @ high %RH

Plotting peak height 1508cm-1 against test duration

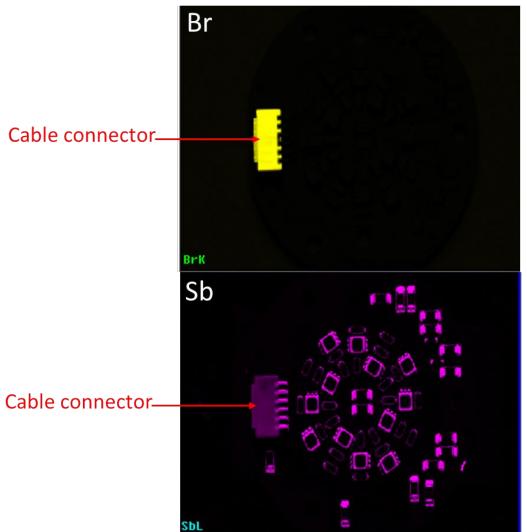


- FTIR / Raman can make degradation visible in an early stage
- Molecular understanding of chemistry leading to failure
- Input for modelling the application window / determination of acceleration factors

Micro-XRF

X-ray fluoresence

- Elemental analysis technique
- No / minimal sample preparation needed
- Non destructive



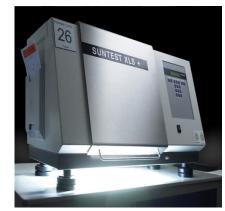
Restriction of Hazardous Substances (RoHS) – Check sourced BOM parts Micro-XRF

The *Restriction of Hazardous Substances Directive* restricts the use of *6 hazardous materials* in electronic equipment

RoHS restricted substances	Limits
Lead (Pb)	1000 ppm
Mercury (Hg)	1000 ppm
Cadmium (Cd)	100 ppm
Hexavalent chromium (Cr6+)	1000 ppm
Polybrominated biphenyl (PBB)	1000 ppm
Polybrominated diphenyl ether (PBDE)	1000 ppm

PBB and PBDE are flame retardants and contain 50-85w% Br. Br in combination with Sb is an indication for the presence of PBB or PBDE

PCB mapping of RoHS elements (Br and Sb)


Reliability tests & material characterization

- Feedback loop to material characterization enables identification of <u>failure mode</u> & to <u>follow the degradation process in time</u> (determination of acceleration factor using multi level tests)
- Prediction model for degradation speed

- Damp-heat test
- Temperature shock test
- Temperature cycle test
- UV / light radiation
- HALT
- Salt-mist test
- Humidy-freeze test
- IP testing
- Chemical resistance test

operational & non operational

The value of material characterization in product development

Lower risk for:

- Delay in market introduction / product release
- Product quality & reliability issues
- Last minute BOM changes
- Cost uplift
- Supplier "issues"
- ≻

Contactgegevens

- Philips Innovation labs
- High Tech Campus 11 Eindhoven
- +31 6 55874122
- b.m.f.broers@lighting.com
- Standnummer: 6

29 NOVEMBER 2018 TECHNIEKHUYS VELDHOVEN PLOT CONFERENTIE TOMORROW'S RELIABILITY

Contactgegevens

- Philips Innovation labs
- High Tech Campus 11 Eindhoven
- +31 6 55874122
- b.m.f.broers@lighting.com
- Standnummer: 6

Soon we will be part of a new organisation

Leave your name card at our stand if you would like to be informed

29 NOVEMBER 2018 TECHNIEKHUYS VELDHOVEN PLOT CONFERENTIE TOMORROW'S RELIABILITY