On the Evolution of Qualification Methods and Standards for Microelectronics in Automotive Applications beyond AEC-Qxx

NXP – René Rongen

29 NOVEMBER 2018 TECHNIEKHUYS VELDHOVEN PLOT CONFERENTIE TOMORROW'S RELIABILITY

Company Introduction

PLOT CONFERENTIE 29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

René Rongen / PLOT Conference 2018

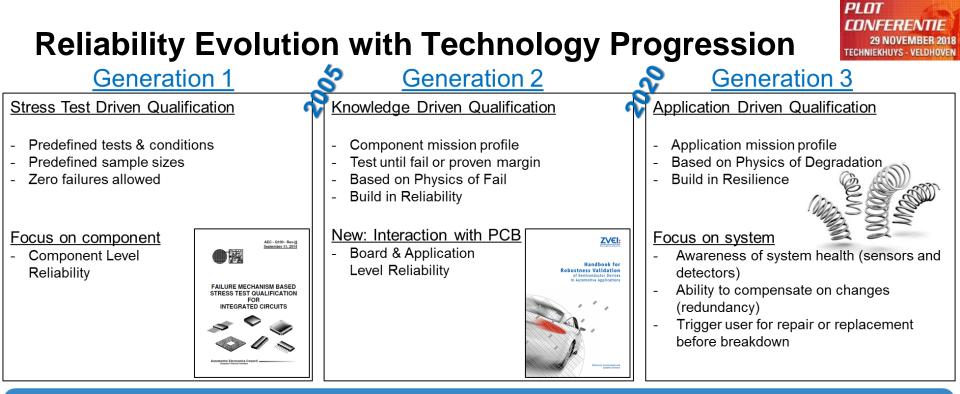
Personal Introduction

- Fellow / Corporate Q&R
 - Joined NXP/ Philips as Reliability Engineer in 1997
- Internal Standardization
 - NXP Reliability Policy
 - NXP Cu-wire Way-of-Working
- External Standardization & Industry Consortia: Active participation in JEDEC, AEC, ZVEI
- Reliability "R&D", Competence Building, Knowledge Sharing
 - NXP: Applied Reliability Training, Reliability Knowledge Framework
 - Conferences: IRPS, ECTC, ESREF, AEC-RW / (co)author, session chair, invited speaker
 - Dutch Accreditation Council: ISO17025 certification of reliability labs
- Problem Solving & Risk Assessments

- 1. Industry Trend & Evolution of Reliability Qualification Methods
- 2. AEC Automotive Electronic Council: Background
- 3. Automotive Electronics Reliability Challenge 1: Extended Testing & Mission Profiles
- 4. Automotive Electronics Reliability Challenge 2: Interaction with Applications / PCBs
- 5. Summary

- 1. Industry Trend & Evolution of Reliability Qualification Methods
- 2. AEC Automotive Electronic Council: Background
- **3.** Automotive Electronics Reliability Challenge 1: Extended Testing & Mission Profiles
- 4. Automotive Electronics Reliability Challenge 2: Interaction with Applications / PCBs
- 5. Summary

Industry - Trend


- New technologies and application areas require in-depth knowledge on failure mechanisms and mission profiles
 - Sensor and Radar application, ADAS, Autonomous Driving
 - Automotive high temperature applications (beyond Q100 grade 0)
 - Applications with extended operational life time e.g., charging of electric cars

- Industry standards and consortia move towards knowledge based qualification
 - AEC Q100 and other AEC specs
 - JESD94/ JEP122
 - ZVEI Robustness Validation Handbooks

Automotive Electronics Council Component Technical Committee

Products and technologies for future complex applications (IoT, Autonomous Driving) will need all three methods in an optimal balance to meet all reliability requirements

Reliability engineering after RV What is needed to implement a resilient system?

- 1. Sensors and detectors
 - Standardized IP

11/26/2018

- Application-specific sensors
- Using an existing AD
- 2. Resilience core and communication interface
- 3. Ideally: integrated alternate operation modes

Goal is, that sensors, detectors and resilience core can re-use existing circuit blocks to minimize additional expenditure within the system!

Automative Electronica | AE/EIMI-Dir | January 25th, 2018 © Robert Bach Grabit 2017. All rights reserved, also regarding any disponal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. BOSCH

PLOT

CONFERENTIE

TECHNIEKHUYS - VELDHOVEN

29 NOVEMBER 2018

Ref. "Resilience, Reliability Engineering after Robustness Validation", F. Dietz/ Bosch, ECPE RV Workshop 2018

Application Standardized Out Out Test specific degradation sensors sensors Sensors Analog circuitry Resilience Core DC-DC VDD, VB converter Slack monitors NVM Comm. Interface Event, degradation and margin-data Alternate mode configuration

PLOT CONFERENTIE 29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

How to shorten qualification times

- · Go extreme with test conditions :
 - Correlation with standard test condition
 - Reliability models
 - · Unexpected and undesired failures

- Virtual qualification
 - Material characterization
 - · Failure mechanisms models
 - Multi-discipline modelling

9 11/26/2018

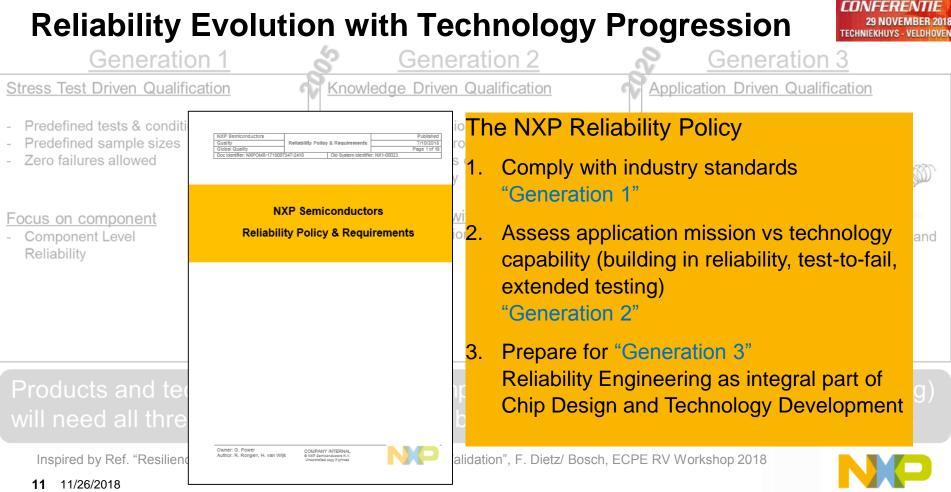
Ref. "Workshop Automotive Challenges", C.M. Villa/ ST, ESREF 2018

Key Messages / Summary

Changes to come to the industry

- New automotive grades / classes will be defined in order to increase design freedom, but keep risk control
 - ▶ *T*-grades
 - A-grades Application (performance vs reliability) grades
 - L-grades Lifetime grades, ...
- New automotive grades / classes will on the other hand force designers to stay in associated design limits which is not the case, today
- Design for compatibility is the answer to reliability & obsolescence management
 - > This includes the usage of standardized MPs
- Replacement electronics approaches will come security licenses will have update limitations
- Function before car design cost efficient reliability assurance of electronics will achieve new ranks w.r.t. other car design aspects
- Joint technology forecasting, monitoring & road mapping along the supply chain is necessary and possible with proposed Platform

Automotive' is in the phase to be defined and renewed


PLOT

TENTIE

TECHNIEKHUYS - VELDHOVEN

ER 2018

10 11/26 Ref. "New Automotive Semiconductor Categories and Classes for Standardized Mission Profile Enablement - a through the supply chain alignment activity", A. Aal/ VW, 1st European AEC-RW Workshop 2018

PLM

René Rongen / PLOT Conference 2018

- 1. Industry Trend & Evolution of Reliability Qualification Methods
- 2. AEC Automotive Electronic Council: Background
- 3. Automotive Electronics Reliability Challenge 1: Extended Testing & Mission Profiles
- 4. Automotive Electronics Reliability Challenge 2: Interaction with Applications / PCBs
- 5. Summary

Automotive Electronics Council - AEC

Component Technical Committee

- 1. Founded 1993, by a.o. Bob Knoell (chair until Sept 2018)
- 2. Original membership of 15 companies
- 3. Now at
 - 18 Sustaining members
 - 46 Technical Committee member companies
 - 9 Associate member companies
- 4. ~ 35 spec/guidelines
- 5. Working Relationship with JEDEC, ESDA, JEITA, IEC, IPC

PIM

TECHNIEKHUYS - VELDHOVEN

AEC: Standards under Revision or Preparation 2018

PLOT CONFERENTIE 29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

EC std #	Current	AFC standard title	AEC std #	Current			
	nev			Rev	AEC standard duc		
Q100	H1	Failure Mechanism Based Stress Test Qualification of integrated Circuits (reference to Q006)	Q200	E	Stress Test Qualification for Passive Components		
Q100-001	6	Wire Bond Shear Test	Q200-001	A	Elame Retardance		
Q100-002	D	Human Body Model Electrostatic Discharge Test	Q200-002	A	Human Body Model Electrostatic Discharge Test		
Q100-003	Đ	Machine Model Electrostatic Discharge Test	Q200-003	A	Beam Load (Break Strength) Test		
Q100-004	С	IC Latch-Up Test	Q200-004 0 Measurement Methods for Resettable Fuses				
0100-005	D	Non-Volatile Memory Program/Erase Endurance, Data Retention	Q200-005	0	Board Flex / Terminal Bond Strength Test		
		and Operating Life Test	Q200-006	A	Terminal Strength Surface Mount / Shear Strength Than		
Q100-006	Ð	Electrothermally-Induced Parasitic Gate leakage Test (GL)	Q200-007	0	Voltage Surge Test		
Q100-007	В	Fault Simulation and Fault Grading					
Q100-008	A	Early Life Failure Rate (ELFR)	Q001 D Parts Average Testing				
Q100-009	В	Electrical Distributions Assessment	Q002	В	Statistical Yield Analysis Guide for Characterization of Integrated Lincuity		
Q100-010	A	Solder Ball Shear Test	Q003	U			
Q100-011	С	Charged Device Model (CDM) Electrostatic Discharge Test	Q004	A	Zero Defects Guideline (unreleased)		
Q100-012		Short Circuit Reliability Characterization of Smart Power Devices for	Q005	В	Pb-Free Test Requirements		
		12V Systems	Q006	A	Copper Wire Qualification		
Q101	E	Stress Test Qualification for Discrete Semiconductors	Charter	A	AEC Charter		
Q101-001	A	Human Body Model (HBM) Electrostatic Discharge (ESD) Test	Q104	0	MCM/Module Qualification		
Q101-002	A	Machine Model (MM) Electrostatic Discharge (ESD) Test			PC Board Qualification		
Q101-003	A	Wire Bond Shear Test	Q103	0	MEMS / Sensors		
Q101-004	0	Miscellaneous Test Methods	Q102	0	LED		
Q101-005	0	Capacitive Discharge Model (CDM) Electrostatic Discharge (ESD) Test	Q100 Rev. I	1	Bare Die/KGD		
0101-005		Short Circuit Reliability Characterization of Smart Power Devices for		0	Touch Systems		
Q101-006	0	12V Systems			System Level ESD		

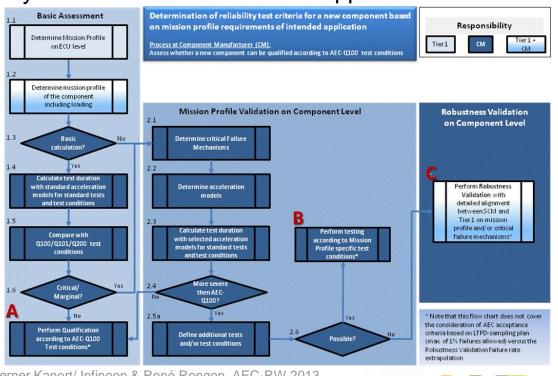
- 1. Industry Trend & Evolution of Reliability Qualification Methods
- 2. AEC Automotive Electronic Council: Background
- 3. Automotive Electronics Reliability Challenge 1: Extended Testing & Mission Profiles
- 4. Automotive Electronics Reliability Challenge 2: Interaction with Applications / PCBs
- 5. Summary

Automotive Electronics Reliability: Challenge 1

 AEC-Q100 needs to provide clarity: Extended test durations, AND Standardized Mission Profiles

Tier1s and OEMs have to accept

Explanation to flow chart:


- A AEC Q100 Standard Qualification
- B Extended Qualification based on Customer Specific MP
- C Modeling / test-to-fail based validation

Ref .:

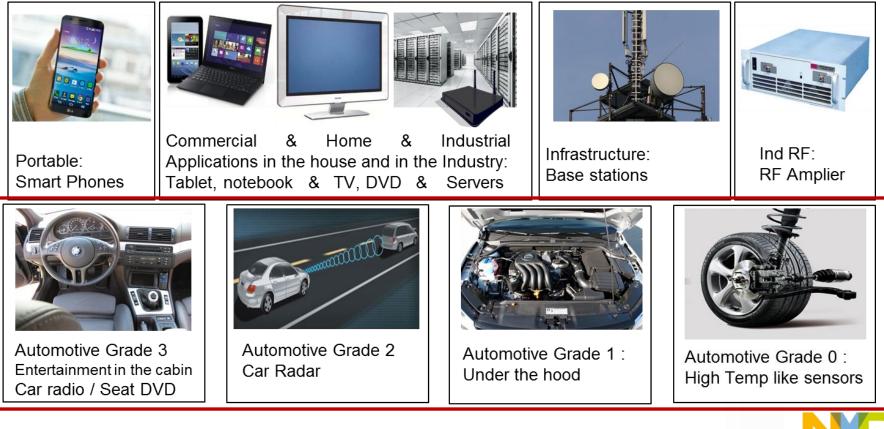
- 1. AEC-Q100H Appendix 7
- 2. "Robustness Validation an Introductory Tutorial". Werner Kanert/ Infineon & René Rongen, AEC-RW 2013
- 3. "Extended Lifetime Qualification based on Standard Mission Profiles", Ulrich Abelein/ Infineon, AEC-RW 2018

16 11/26/2018

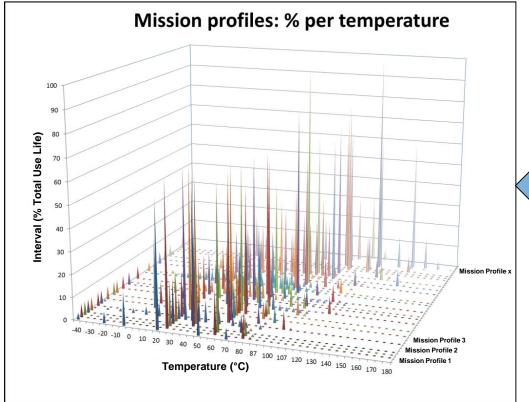
"AEC-Q100/101 - Appendix 7"

PLOT

CONFERENTIE


29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

NXP's "Generic" Mission Profiles; 4 for Automotive


PLOT

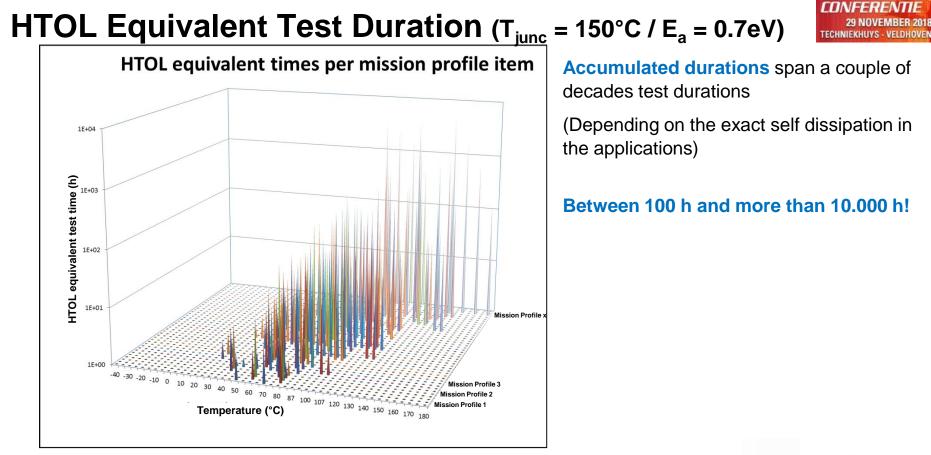
CONFERENTIE

29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

Analysis of > 40 Automotive Mission Profiles ...

Note: Obviously there is more to cover than only 4 AEC-Q100 Grades...

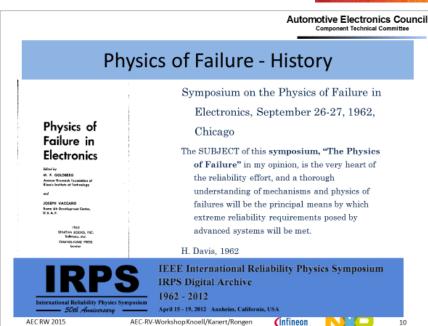
Table 1: Part Operating Temperature Grades


PLOT

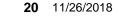
29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

	Grade	Ambient Operating Temperature Range
	<u>0</u>	<u>-40°C to +150°C</u>
	1	-40°C to +125°C
\neg	<u>2</u>	-40°C to +105°C
	<u>3</u>	-40°C to +85°C

Courtesy: Fred Kuper, Internal NXP Report 2014



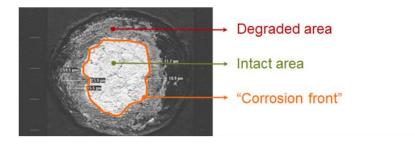
PLOT


Courtesy: Fred Kuper, Internal NXP Report 2014

What is the Limit? Or Failure vs Degradation or Change...

- <u>Physics-of-Fail (PoF)</u>:
 - Principle is already as old as Semiconductor Industry
 - It is all about understanding processes and mechanisms causing degradation with eventual failure of materials and components
- Testing until fail can take a long time...
 - And if failures occur...
 Still the failure mechanism to be understood!

- Alternatively, the process of degradation after "time zero" can be recorded:
 - Physics-of Degradation (PoD) or even better Physics-of-Change (PoC)

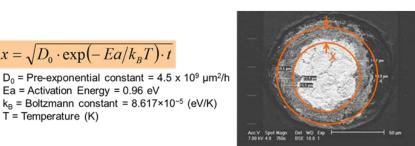


PLOT CONFERENTIE 29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

Example of PoD: High T Corrosion for Cu-wire

Dynamics of Cu-Al Intermetallic Compound (IMC) Corrosion at high T:

IMC analysis method ¹: remove Cu-ball & mold compound in fuming nitric acid and analyze left ٠ intermetallic layer with back scatter SEM analysis


Model of Degradation ²:

 $x = \sqrt{D_0 \cdot \exp(-Ea/k_B T) \cdot t}$

Ea = Activation Energy = 0.96 eV

T = Temperature (K)

 $k_{\rm P}$ = Boltzmann constant = 8.617×10⁻⁵ (eV/K)

References:

- G.M. O'Halloran, et al., "Planar Analysis of Copper-Aluminium Intermetallics", in Proc. International Symposium for testing and Failure Analysis (ISTFA), San Jose, CA, Nov 3-7 2013, pp.297-300
- Lifetime prediction of Cu-Al wire bonded contacts for different mold compounds, R. Rongen et al., Electronic Components and Technology Conference, ECTC 64th, 2014, pp 411-418

Model allows life time prediction of the contact WITHOUT reliability test 11/26/2018

PLOT

CONFERENTIE

29 NOVEMBER 2018 TECHNIEKHUYS - VELDHOVEN

21

- 1. Industry Trend & Evolution of Reliability Qualification Methods
- 2. AEC Automotive Electronic Council: Background
- 3. Automotive Electronics Reliability Challenge 1: Extended Testing & Mission Profiles
- 4. Automotive Electronics Reliability Challenge 2: Interaction with Applications / PCBs
- 5. Summary

Automotive Electronics Reliability: Challenge 2

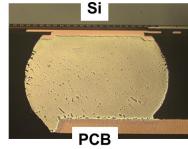
AEC-Qxx:

No standard test method nor requirements for Board Level/ Electrical Solder Joint Reliability Currently: only user (Tier1) specific methods and requirements - very inefficient...

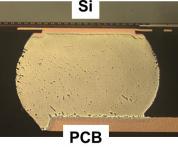
In addition: ٠

> The "interaction" between 1st level (component level) and 2nd level (board level) reliability Currently: only <u>guidelines</u> in JEP150

level of assembly: solder joint reliability


Second level reliability or board level reliability

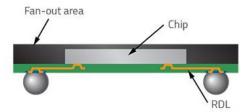
First level reliability


Attachment of a component to the next

Corrosion

Thermomechanical

PIM


Wafer Level Packages:

Is it 1st or 2nd level?

TECHNIEKHUYS - VELDHOVEN

Bumped Dies: New Approach (Flip Chip, Fan-out WLP and WL CSP)

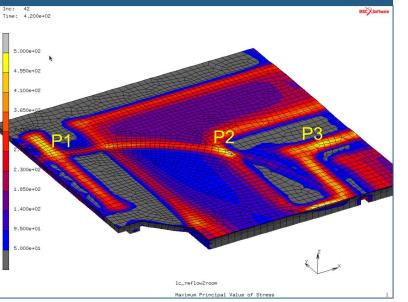
- Two key differences compared to conventional plastic packages
 - Failure modes accelerated by TC are different: dominant are cracks in the BEoL
 These can only be accelerated in the presence of a solder connection (see next slide)
 - Handling WLCSP may results in (many) non-stress related fails
 Mounting on a carrier is effectively preventing damage due to handling
- In principle JEP150 does apply in this case (assembled solid state devices); the problem is that JEP150 is not giving any requirements
 - NXP defined test method & requirements internally
 - Guidelines (no requirements) added to latest JESD47 revision K (IC Qualification Standard for Commercial & Industrial Application)
 - Major OEM for mobile applications adjusted its IC Qualification Standard accordingly
 - Will AEC-Qxx be next?

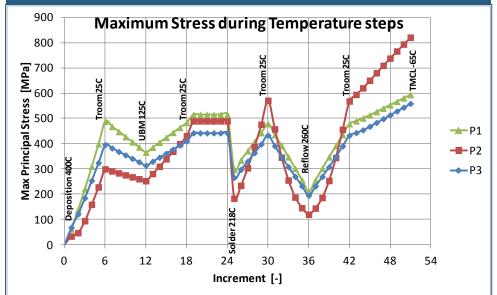
Flip Chip, Fan-out WLP and WL CSP Thermomechanical Failure Modes in BEoL

ТС Туре	Test vehicle		Electrical signature	Phy	vsical signature
Component Level (CL-TC)	Singulated functional devices or part of a wafer		No failure	No damage (crack)	
Board Level (BL-TC)	Daisy chains on a PCB carrier		No failure	Damage (crack)	
Application Level (AL-TC)	Functional devices on a PCB carrier		Failure	Damage (crack)	confirmed by FEM)

Ref.: Reliability of Wafer Level Chip Scale Packages, R. Rongen, R. Roucou, P.J. vd Wel, F. Voogt, F. Swartjes, K. Weide-Zaage, Microelectronics Reliability, 2014, Volume 54, pages 1988-1994

25 11/26/2018




Flip Chip, Fan-out WLP and WL CSP Example BEoL Stress Modeling for WL CSP

P1, P2 and P3: relevant metal structures in the corner of the die

Modeling of principal stress development over time: bumping – PCB soldering – AL-TC

Modeling allows for setting up design rules

26 11/26/2018

Flip Chip, Fan-out WLP and WL CSP Background NXP AL TC Requirements

Taking 1000 c from -40 to 85 °C as reference and using Coffin-Manson (CM) equation with exponent 6 for the other conditions:

1	Low T	High T	Reference	Calculated	*Coffin-Manson equation:
- 5	(°C)	(°C)	(C)	(C)*	$(\Lambda T,)^{n}$
	-40	85	1000	<u>1000</u>	$AF = \frac{\Delta T_{stress}}{\Delta T}$
	-40	125		189	$\left(\Delta I_{use}\right)$
					AFAcceleration FactorΔT _{atress} Temperature swing during stress testΔTuseTemperature swing during use

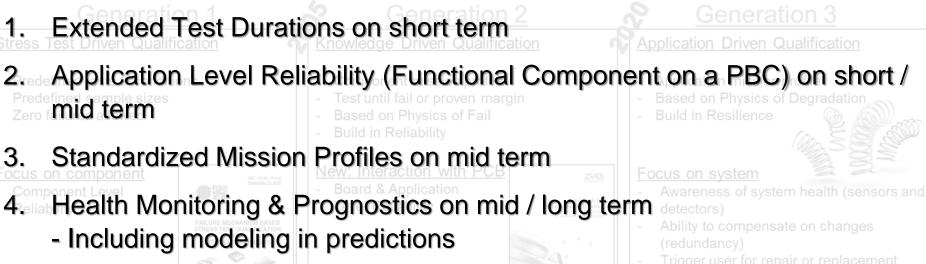
CM exponent 6 is selected because the failure mode to cover is not solder joint fatigue but crack in the <u>BEoL</u>.

n = 6

CM exponent; brittle fractures (JEP122)

To ensure robustness margin while not breaking solder joints, NXP uses 300 c from -40 to 125 °C as a requirement for AL TC, ~ 1.5 x 189 c (*blue-italic*), for non automotive .

For Automotive, AL TC requirements range from 500 to 1000 c



- 1. Industry Trend & Evolution of Reliability Qualification Methods
- 2. AEC Automotive Electronic Council: Background
- **3.** Automotive Electronics Reliability Challenge 1: Extended Testing & Mission Profiles
- 4. Automotive Electronics Reliability Challenge 2: Interaction with Applications / PCBs

5. Summary

Qualification Method Evolution beyond AEC-Qxx

PIM

TECHNIEKHUYS - VELDHOVEI

- 5. "Virtual" qualifications (using modeling) will not replace but complement "real" qualifications on mid / long term
- Boundary Condition: industry wide exchange of Knowledge on Physics of Fail / Degradation / Change

Contact Details

- NXP Semiconductors
- Gerstweg 2, 6534 AE Nijmegen BX0.035
- +31 (0)6 51 17 1461
- rene.rongen@nxp.com

29 NOVEMBER 2018 TECHNIEKHUYS VELDHOVEN PLOT CONFERENTIE TOMORROW'S RELIABILITY