
1

From software to hardware
Martijn Bastiaan <martijn@qbaylogic.com>

What’s “hardware”?
This: Not
this:

2

Why talk hardware in a
software cluster?
Hardware and software development have a lot in common:

▪ FPGAs are reconfigurable
▪ Virtually all design time spent on “plain text”

– e.g. VHDL, Verilog

▪ Typical work day:

3

Write

CompileTest

Why talk hardware in a
software cluster?

FPGAs have a lot to offer

▪ Exact control over timing
– Latencies measured in nanoseconds

▪ Enormous performance boosts for specific applications

4

Hardware architectures
▪ Fundamentally:

– Logic elements (AND, XOR, OR, ..)
– Memory elements (flip-flop)
– Connected to each other by wires

▪ Clever combinations do actual work!

▪ Conventional languages: Verilog and VHDL

5

Better abstractions
Software:
▪ Assembly to C to Java, Python, C++, Scala

Embedded:
▪ C to MicroPython, Rust

Hardware:
▪ VHDL, Verilog to ????

6

Software languages
▪ E.g., C, Python

▪ Fundamentally:
– Fetch instruction
– Execute
– Store result

▪ In other words:
– Sequential operation
– Critically depends on (large) Random Memory Access

7

Software to hardware

8

software

timeless

model

hardware

description

What if..

9

timeless

model

software

hardware

description

Functional prog.: Haskell
▪ No deals with the devil:

– A function’s output only depends on its input
– No explicit memory model / pointer logic
– Effectively parallel

▪ Decades of engineering:
– Software performance on par with Go/C#
– Strong mathematical foundations

▪ Very expressive type system

10

Clash: Haskell => hardware
▪ The missing piece:

– Translates Haskell to hardware descriptions
– Reuses large parts of Haskell’s optimizing compiler: GHC
– Full control over hardware, like VHDL and Verilog

▪ Virtually all of Haskell’s features translatable to hardware
▪ Free, OSS, BSD-2 licensed
▪ Developed by community and QBayLogic
▪ https://clash-lang.org/

11

Clash in the real world
▪ Myrtle.ai

– FPGA based neural network accelerator

▪ Demcon-Focal
– Satellite - ground laser communication

▪ “FAANG” Research
– Cycle predictable, self-synchronizing data centre

applications
– https://github.com/bittide/bittide-hardware

12

https://github.com/bittide/bittide-hardware

Conclusion
▪ Functional programming ideal start for architecture

specifications
▪ Haskell is a high performance, general purpose

programming language
▪ Clash adds hardware description backend to Haskell

▪ Software engineers should not fear hardware designs!

13

Questions
▪ QBayLogic, FPGA-ASIC design house
▪ Present today:

– Maarten Kuper <maarten@qbaylogic.com>
– Martijn Bastiaan <martijn@qbaylogic.com>

14

	Dia 1: From software to hardware
	Dia 2: What’s “hardware”?
	Dia 3: Why talk hardware in a software cluster?
	Dia 4: Why talk hardware in a software cluster?
	Dia 5: Hardware architectures
	Dia 6: Better abstractions
	Dia 7: Software languages
	Dia 8: Software to hardware
	Dia 9: What if..
	Dia 10: Functional prog.: Haskell
	Dia 11: Clash: Haskell => hardware
	Dia 12: Clash in the real world
	Dia 13: Conclusion
	Dia 14: Questions

