

Sneller op de markt door al tijdens de schema fase de HW validatie mogelijkheden vast te stellen

Rik Doorneweert rik@jtag.com

Typical Production line (SMT)

Goal: zero defects strategy

2

2022

& SCIENCE

Typical fault spectrum

Errors due to bad production process or bad design?

Anyhow, find the failures before the end-users of the product do !!!

Which test methods to use for my design?

4

Miniaturization and its consequences....

% division SMT / Complexity Device

Traditional Test Methods

More efforts to develop a test program

> More complex failure localization

Contribution of the JTAG Interface

CPU

IFFE-1149 Reg

IEEE 1149.x

Embedded Test

6

SMT / Complexity Device

Best solution: Combine test methods

Optimal Failure localization

Typical HW engineering process

& SCIENCE

Better HW engineering process

Questions to get to best fitting Test Strategy

- **1.** What is the expected Production volume?
- 2. What is the expected lifetime of this board?
- 3. What is the total cost of the BOM?
- 4. How many productions errors are acceptable, what is the impact of a failing board?
- 5. What can you as HW engineer do to help the EMS to achieve zero defects delivery?
- 6. Which test methods performs the EMS partner by default?
- 7. What is the expected coverage per applied test method?
- 8. What is the level of pinpointing diagnostics of each of the test methods we apply?
- 9. What is the expertise of the person that will repair the boards that fail after each of the test steps?
- 10. How to program the programmable device(s), production tool or engineering tool?

Basics of Boundary scan

- Chip level
- Test possibilities on board level
- Programming via the JTAG interface

Test Access Port (TAP)

Basics – Chip Level

♦ TAP Signals:

- ♦ Test Data Input
- Test Data Output
- ♦ Test Mode Signal
- Test Clock
- ♦ Test Reset

♦ Test Access Port (TAP)

- ♦ TAP Signals:
 - ♦ Test Data Input
 - Test Data Output
 - Test Mode Signal
 - Test Clock
 - Test Reset
- ♦ Bypass register
- ♦ Identification register
- Instruction register

Test Access Port (TAP)

- ♦ TAP Signals:
 - ♦ Test Data Input
 - Test Data Output
 - Test Mode Signal
 - Test Clock
 - Test Reset
- ♦ Bypass register
- ♦ Identification register
- Instruction register
- Boundary Scan register

♦ Test Access Port (TAP)

- ♦ TAP Signals:
 - ♦ Test Data Input
 - Test Data Output
 - Test Mode Signal
 - Test Clock
 - Test Reset
- ♦ Bypass register
- Identification register
- Instruction register
- Boundary Scan register

Private

2022

& SCIENCE

Basics - Test Applications

Capture value | Identification value | TRST connection | Boundary Scan Register length

Testing on: Opens, Shorts , Stuck at 1 (SA1), Stuck at 0 (SAO)

2022

Basics - Test Applications

Testing switch positions

- Interconnect
- ♦ LEDs
- Switches
- Connectors

Testing connections through connectors and via physical test points

23

Check presence of Pull up / Pull down resistors

© JTAG Technologies 2020

2022

TECHNOLOGY & SCIENCE

Basics - Test Applications

Test address - , data – and control lines of SRAM, DRAM, SDRAM, DDR2/3/4 etc.

LVDS connections (IEEE 1149.6)

- Chain
- ♦ Interconnect
- ♦ LEDs
- Switches
- Connectors
- Resistors presence
- Memory connections
- LVDS
- ♦ Presence I²C, SPI, PHY

Serial bus tests (I²C, SPI ect.)

Chain

- ♦ Interconnect
- LEDs
- Switches
- Connectors
- Resistors presence
- Memory connections
- LVDS

2022

- ♦ Presence I²C, SPI, PHY
- Voltage, Freq, PWM

WORLD OF

TECHNOLOGY & SCIENCE

Increase Test coverage with external analogue driving and sense capabilities (ADC/DAC, PWM ect.)

Chain

- ♦ Interconnect
- LEDs
- Switches
- Connectors
- Resistors presence
- Memory connections
- LVDS
- ♦ Presence I²C, SPI, PHY
- Voltage, Freq, PWM
- Python Functional Test

Testing functions with Python based scripts, using Bscan accessible nodes as variable

- Chain
- ♦ Interconnect
- LEDs
- Switches
- Connectors
- Resistors presence
- Memory connections
- LVDS
- ♦ Presence I²C, SPI, PHY
- Voltage, Freq, PWM
- Python Functional Test

Emulative Test for firmware independent @speed Test

- Chain
- ♦ Interconnect
- LEDs
- Switches
- Connectors
- Resistors presence
- Memory connections
- LVDS
- ♦ Presence I²C, SPI, PHY
- Voltage, Freq, PWM
- Python Functional Test

In-System Programming – via Bscan register

FlashI²C Flash

SPI Flash

In-System Programming – micro controllers

In-System Programming – logic devices

In-System Programming – via short chain

FlashI²C Flash

SPI Flash

In-System Programming – via embedded programmer

♦ I²C Flash

SPI Flash

♦ Other...

Benefits of Boundary scan

- Affordable
- High coverage

VORLD OF FECHNOLOGY SCIENCE

- No firmware required
- No or minimal number of test pads (test fixtures with less connections, less EMC issues)
- Can be used during all product stages (prototype, pre-production, production, field repairs)
- Typically, JTAG interface is already available in your digital design(s)
- Testability and programmability can be determined at schematic stage

Stand 9D079

1 1 - 1 - 1	