Improved Functional Safety with Advanced Real Time Embedded Battery Diagnostics

ENERGY STORAGE EVENT

Content

- Motivation EV Battery Management
- Thermal Runaway
- Thermal Model Behavior and Thermal Management
- New Advanced Diagnostics Features
- System Structure and Implementation
- Results and Conclusion

High Voltage Battery System based on Stack Structure

Requirements and Challenges

High Voltage Battery System based on Stack Structure

Challenges

- Functions of a battery management system
- Battery models and simulation of battery packs
- Battery state estimation
- Battery health estimation
- Cell balancing
- Voltage-based power limit estimation
- Aging mechanisms and degradation models
- Optimized controls for power estimation

How to Improve Functional Safety?

Requirements for Advanced Battery Diagnostics

- State-of-Health SoH Analysis
- State-of-Function SoF Analysis
- Smart Battery Management
- Remaining Useful Life Calculation
- Battery 2nd Life Qualification
- Non Invasive Temperature Measurement
- State-of Charge Analysis
- Prediction of Battery Life without Big Data

Battery System Audi e-tron 2018

Integrated Crash Structure of the Li-Ion Battery

ENERGY STORAGE
EVENT

12 februari 2019
NH Conference Centre Koningshof

Battery System Audi e-tron 2018

Li-Ion Battery Module with 12 Pouch Cells Audi e-tron Prototyp Audi e-tron Prototype Lithium-Ionen-Batterie mit zwölf Pouch-Zellen Lithium-ion battery modul with twelve pouch cells Batterie im Pouchzellen-Modul-Prinzip Pouch cell battery modul Pouch-Zellen Pouch cell Aluminium-Gehäuse Aluminum case **ENERGY STORAGE**

Thermal Runaway

The three-level strategy of reducing the hazard caused by thermal runaway.

Thermal Runaway

Internal short circuit: the most common feature of TR.

Thermal Runaway

The results of overcharge induced TR for a commercial lithium ion battery

Contour of temperature distribution in the cell @ 5C:

Contour of temperature distribution in the pouch cell @ 5C:

Thermal image of a lithium-ion pouch cell discharging at a 5C rate in ambient air. Cathode terminal is in the upper left corner of pouch cell.

Battery Design and Cooling Strategies w/o Fan

Explanation of fan and opening locations

Temperature of 3 x 8 battery module without airflow.

Conditions:

- Airflow speed of different module patterns to be 1 m/s
- Area of the fan and opening is 0.002828 m2
- Radius of fan is 0.03 m when the air inlet is round
- Outer cells are 1 mm away from the module case,
- There is 5 mm between the cell bottom and case bottom and 15

ENERGY STORAGE
ENERGY STORAGE

Source: [2] Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies; Tao Wang, K.J. Tseng, Jiyun Zhao 1, Zhongbao Wei; EXQUISITUS, Centre for E-City, School of Electrical and Electronics En Technological University, Singapore 639798, Singapore; http://dx.doi.org/10.1016/j.apenergy.2014.08.013

High Voltage Battery System based on Stack Structure

Challenges

- Monitoring and analyzing on cell level and / or stack level
- High voltage power net up to 800V
- Fast charging mode based on higher voltages
- Temperature Measurement and Analysis
- Thermal management during charge and discharge cycles, Pressure Measurement
- Load current limitations without limiting the driving performance
- Real time battery analyzing procedure during traffic light stop
- Battery analyzing based on functional safety without big data or cloud connection

Introduction – Simplified xEV Powertrain

The Approach

Measure, analyze and characterize a battery without knowing anything about the life of the battery before !!!!

Key Requirements in BMS

SOC Analysis and Monitoring

Temperature Analysis and **Monitoring**

SoH Analysis and **Monitoring**

Why Electro Impedance Spectroscopy (EIS) is so important in BMS?

Impedance Spectroscopy - Method

- Experimental efficiency and non-invasiveness
- More information than only by resistive, capacitive or inductive measurement
- Possibility to separate effects dominating in different frequency ranges

ENERGY STORAGE EVENT

12 februari 2019 NH Conference Centre Koningshof

EIS Data for Li-Ion Battery Analysis

Typical Parameters for a EIS data analysis

- State-of-Charge SOC from 0% to 100%
- Temperature Range from -20°C to +60°C
- Frequency Range Analysis 10mHz to 1kHz for Electro Impedance
 Spectroscopy

Overview – Battery Diagnosis and Challenges

EIS - Voltage and current sampling circuits.

AC Excitation

Simplified Block Diagram for
 Advanced Battery Diagnostics
 based on Impedance Spectroscopy

Application Example: Intelligent BMS

Source: TU-Chemnitz - Professorship Sensor and Measurement Technology - Olfa Kanoun

→ Impedance Spectra @ different SOC (10-90%) of 4 equivalent cells

ENERGY STORAGE EVENT

Application Example: Intelligent BMS

Impedance Analysis for Cell Temperature Diagnostics

Source: Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling XuezheWei 1,2, Xueyuan Wang 1,2 ID and Haifeng Dai 1,2,* 1 Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China; weixzh@tongji.edu.cn (X.We.); 7wangxueyuan@tongji.edu.cn (X.Wa.) 2 School of Automotive Studies, Tongji University, Shanghai 201804, China

→ Hot Spots are detectable by impedance spectroscopy

Battery System

IBCB: Inter-Block-Communicatio

CSC: Cell Supervisory Chip

ENERGY STORAGE
EVENT

12 februari 2019
NH Conference Centre Koningshof

Our BMS Chipset Solution

Traditional System Architecture vs. Advanced System Architecture

Cell Voltage Measurement

Redundancy:

- 13 bits Delta-Sigma ADC for each channel
- 10 bits SAR-ADC + MUX for all channels
- Separate power supply for both ADCs

Synchronous Measurement

- Accuracy:
 - ± 1.5 mV @ 4.6V Cell and 25°C
 - ± 3 mV @ 4.6V Cell and -40°C~125°C

ENERGY STORAGE EVENT

12 februari 2019 NH Conference Centre Koningshof

Summary and Conclusions

As a CSC chip, is eye and hand of the BMS host MCU

- Benefits at a glance:
 - Redundant and Synchronous Cell Voltage Measurement
 - RealTime Robust Inter-Block Communication
 - Unique Active Balancing methods
 - Rich Diagnosis Features
 - Possible to support ASIL-C systems
 - Modeling for state estimation
 - Measurement of inner cell temperature, State-of Health SoH, State-of-Function SoF
 - Usage for all Cell Chemistries

Significant Improvement of Functional Safety

Contact

Andreas Mangler
IEEE Member
Director Strategic Marketing
Member of the Extended Management Board
Rutronik Elektronische Bauelemente GmbH
andreas.mangler@rutronik.com

Kazim Akyar

kazim.akyar@rutronik.com

Regional Sales Manager Netherlands Tel. +31 76 572 4008 Mobile +31 6 46 14 32 32

Rutronik Elektronische Bauelemente GmbH NL-Breda

Committed to excellence

ENERGY STORAGE
EVENT

12 februari 2019
NH Conference Centre Koningshof