• Home
  • Nieuws
  • Programma
  • Demo’s op de beursvloer
  • Exposanten
    • Deelnemen als exposant
      • Deelnameformulier D&E event 2023
    • Mediapartners
  • Locatie
  • Historie
    • Programma 2022
    • Programma 2021
    • Programma 2020
    • Programma 2019
      • Foto impressie
    • Programma 2018
      • D&E Event NL
        • Partners NL
      • D&E Event BE
        • Conference 2018
        • Exhibitors 2018
        • Exhibition Center
        • Partners BE
    • D&E NL 2017
      • Programma NL 2017
      • Exposanten 2017
    • D&E BE 2017
      • Conference BE 2017
      • Exhibitors 2017
    • D&E 2016
      • Presentaties en programma 2016
      • Exposanten 2016
    • D&E 2015
      • Presentaties en programma 2015
    • D&E 2014
      • Exposanten 2014
      • Presentaties en programma 2014
    • D&E 2013
      • Exposanten 2013
      • Presentaties en programma 2013
      • D&E Event – 9 oktober 2013
  • Contact
  • Account
    • Login
  • Login
  • Zoeken

D&E Event

Design Automation & Embedded Systems

Accelerating Neural Network driven Image Classification using an FPGA with a Binary neural network

Image Classification using a GPU and a Convolutional neural network delivers great performance but also creates some challenges if you want to use this type of machine learning in an edge application like a smart camera. Size, power consumption and long-term availability are a few we will briefly discuss.

We will explain how Xilinx Research created a framework to speed-up and shrink a convolutional neural network so it can fit a small FPGA using a Binary neutral network implementation.

We will explain the implementation in the Zynq UltraScale+ MPSoC and give some details on the used Ultra96 board, which is build according to the consumer 96boards specification.

Karl De Boois, EBV Elektronik

Terug naar programma

Privacy statement
Disclaimer
Cookies

Copyright © 2023 · Onderdeel van FHI ·